Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

S6K (S6 Kinase)

  • Isadora Carolina Betim Pavan
  • Fernando Riback Silva
  • Ana Paula Morelli
  • Fernando Moreira Simabuco
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101816-1

Synonyms

Historical Background

The ribosomal S6 protein kinases (S6Ks) represent a superfamily of proteins which were originally discovered to phosphorylate ribosomal protein S6. Proteins known as p90 ribosomal S6 kinases (RSKs) have been first identified as able to phosphorylate ribosomal protein S6 (Jones et al. 1988). A short time later, S6K1 protein was discovered gaining a major role in S6 phosphorylation in somatic cells, while RSKs gained less significance in this process (Banerjee et al. 1990). It is important to note that RSKs and S6Ks belong to different subfamilies of serine/threonine kinases but...

Keywords

Nuclear Localization Signal Murine Double Minute Eukaryotic Translation Initiation Factor Increase S6K2 Phosphorylation eIF4B Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Abe Y, Yoon SO, Kubota K, Mendoza MC, Gygi SP, Blenis J. p90 ribosomal S6 kinase and p70 ribosomal S6 kinase link phosphorylation of the eukaryotic chaperonin containing TCP-1 to growth factor, insulin, and nutrient signaling. J Biol Chem. 2009;284(22):14939–48.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amaral CL, Freitas LB, Tamura RE, Tavares MR, Pavan ICB, Bajgelman MC, et al. S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells. BMC Cancer. BMC Cancer. 2016;16(1):602.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antion MD, Merhav M, Hoeffer CA, Reis G, Kozma SC, Thomas G, et al. Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learn Mem. 2008;15(1):29–38.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Banerjee P, Ahmad MF, Grove JR, Kozlosky C, Price DJ, Avruch J. Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase. Proc Natl Acad Sci U S A. 1990;87(21):8550–4.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science. 2013;339(6125):1323–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A. 1998a;95(4):1432–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burnett PE, Blackshaw S, Lai MM, Qureshi IA, Burnett AF, Sabatini DM, et al. Neurabin is a synaptic protein linking p70 S6 kinase and the neuronal cytoskeleton. Proc Natl Acad Sci U S A. 1998b;95(14):8351–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carayol N, Katsoulidis E, Sassano A, Altman JK, Druker BJ, Platanias LC. Suppression of programmed cell death 4 (PDCD4) protein expression by BCR-ABL-regulated engagement of the mTOR/p70 S6 kinase pathway. J Biol Chem. 2008;283(13):8601–10.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB. p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake. Cell Metab. Elsevier Inc.2012;16(1):104–12.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Degroot RP, Ballou LM, Sassonecorsi P. Positive regulation of the cAMP-responsive activator CREM by the p70 S6 kinase: an alternative route to mitogen- induced gene expression 1036. Cell. 1994;79:81–91.CrossRefGoogle Scholar
  11. Deprez J. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1997;272(28):17269–75.CrossRefPubMedGoogle Scholar
  12. Fenton TR, Gwalter J, Ericsson J, Gout IT. Histone acetyltransferases interact with and acetylate p70 ribosomal S6 kinases in vitro and in vivo. Int J Biochem Cell Biol. 2010;42(2):359–66.CrossRefPubMedGoogle Scholar
  13. Ferrari S, Bannwarth W, Morley SJ, Totty NF, Thomas G. Activation of p70s6k is associated with phosphorylation of four clustered sites displaying Ser/Thr-Pro motifs. Proc Natl Acad Sci U S A. 1992;89(15):7282–6.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Goh ETH, Pardo OE, Michael N, Niewiarowski A, Totty N, Volkova D, et al. Involvement of heterogeneous ribonucleoprotein F in the regulation of cell proliferation via the mammalian target of rapamycin/S6 kinase 2 pathway. J Biol Chem. 2010;285(22):17065–76.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci U S A. 2001;98(17):9666–70.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ip CKM, Cheung ANY, Ngan HYS, Wong AST. p70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells. Oncogene. 2011;30(21):2420–32.CrossRefPubMedGoogle Scholar
  17. Ismail HMS, Myronova O, Tsuchiya Y, Niewiarowski A, Tsaneva I, Gout I. Identification of the general transcription factor Yin Yang 1 as a novel and specific binding partner for S6 Kinase 2. Cell Signal. 2013;25(5):1054–63.CrossRefPubMedGoogle Scholar
  18. Ismail HMS, Hurd PJ, Khalil MIM, Kouzarides T, Bannister A, Gout I. S6 kinase 2 is bound to chromatin-nuclear matrix cellular fractions and is able to phosphorylate Histone H3 at Threonine 45 in vitro and in vivo. J Cell Biochem. 2014;115(6):1048–62.CrossRefPubMedGoogle Scholar
  19. Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors. 2007;25(4):209–26.CrossRefPubMedGoogle Scholar
  20. Jones SW, Erikson E, Blenis J, Maller JL, Erikson RL. A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc Natl Acad Sci U S A. 1988;85(10):3377–81.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Karlsson E, Perez-Tenorio G, Amin R, Bostner J, Skoog L, Fornander T, et al. The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Res. 2013;15(5):R96.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 2007;14(3):185–93.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kim K, Pyo S, Um SH. S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver. Hepatology. 2012;55(6):1727–37.CrossRefPubMedGoogle Scholar
  24. Kim SY, Baik K-H, Baek K-H, Chah K-H, Kim KA, Moon G, et al. S6K1 negatively regulates TAK1 activity in the toll-like receptor signaling pathway. Mol Cell Biol. 2014;34(3):510–21.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lai KP, Leong WF, Chau JFL, Jia D, Zeng L, Liu H, et al. S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response. EMBO J Nat Publ Group. 2010;29(17):2994–3006.Google Scholar
  26. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005;121(2):179–93.CrossRefPubMedGoogle Scholar
  27. Macias MJ, Wiesner S, Sudol M. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 2002;513(1):30–7.CrossRefPubMedGoogle Scholar
  28. Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. 2011;441(1):1–21.CrossRefGoogle Scholar
  29. McGuire DJ, Rowse AL, Li H, Peng BJ, Sestero CM, Cashman KS, et al. CD5 enhances Th17-cell differentiation by regulating IFN-γ response and RORγt localization. Eur J Immunol. 2014;44(4):1137–42.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mora A, Komander D, van Aalten DMF, Alessi DR. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol. 2004;15(2):161–70.CrossRefPubMedGoogle Scholar
  31. Narayanan U, Nalavadi V, Nakamoto M, Thomas G, Ceman S, Bassell GJ, et al. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J Biol Chem. 2008;283(27):18478–82.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Panasyuk G, Nemazanyy I, Zhyvoloup A, Bretner M, Litchfield DW, Filonenko V, et al. Nuclear export of S6K1 II is regulated by protein kinase CK2 phosphorylation at Ser-17. J Biol Chem. 2006;281(42):31188–201.CrossRefPubMedGoogle Scholar
  33. Panasyuk G, Nemazanyy I, Filonenko V, Gout I. Ribosomal protein S6 kinase 1 interacts with and is ubiquitinated by ubiquitin ligase ROC1. Biochem Biophys Res Commun. 2008;369(2):339–43.CrossRefPubMedGoogle Scholar
  34. Pardo OE, Wellbrock C, Khanzada UK, Aubert M, Arozarena I, Davidson S, et al. FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCepsilon, B-Raf and S6K2. EMBO J. 2006;25(13):3078–88.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Park I-H, Bachmann R, Shirazi H, Chen J. Regulation of ribosomal S6 kinase 2 by mammalian target of rapamycin. J Biol Chem. 2002;277(35):31423–9.CrossRefPubMedGoogle Scholar
  36. Pavan ICB, Yokoo S, Granato DC, Meneguello L, Carnielli CM, Tavares MR, et al. Different interactomes for p70-S6K1 and p54-S6K2 revealed by proteomic analysis. Proteomics. 2016;16(20):2650–66.CrossRefPubMedGoogle Scholar
  37. Pearce LR, Alton GR, Richter DT, Kath JC, Lingardo L, Chapman J, et al. Characterization of PF-4708671, a novel and highly specific inhibitor of p70 ribosomal S6 kinase (S6K1). Biochem J. 2010;431(2):245–55.CrossRefPubMedGoogle Scholar
  38. Peterson RT, Desai BN, Hardwick JS, Schreiber SL. Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci U S A. 1999;96(8):4438–42.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, et al. Phosphorylation and activation of p70s6k by PDK1. Science. 1998;279(5351):707–10.CrossRefPubMedGoogle Scholar
  40. Rajapakse AG, Yepuri G, Carvas JM, Stein S, Matter CM, Scerri I, et al. Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: inhibition by resveratrol. PLoS One. 2011;6(4):e19237.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Raught B, Peiretti F, Gingras A-C, Livingstone M, Shahbazian D, Mayeur GL, et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 2004;23(8):1761–9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Richardson CJ, Bröenstrup M, Fingar DC, Jülich K, Ballif BA, Gygi S, et al. SKAR is a specific target of S6 kinase 1 in cell growth control. Curr Biol. 2004;14(17):1540–9.CrossRefPubMedGoogle Scholar
  43. Roizen MF. Rapamycin fed late in life extends lifespan in genetically heterogenous mice. Yearb Anesthesiol Pain Manag Nat Publ Group. 2010;2010(7253):15–6.Google Scholar
  44. Rosner M, Hengstschläger M. Nucleocytoplasmic localization of p70 S6K1, but not of its isoforms p85 and p31, is regulated by TSC2/mTOR. Oncogene. 2011;30(44):4509–22.CrossRefPubMedGoogle Scholar
  45. Saitoh M, ten Dijke P, Miyazono K, Ichijo H. Cloning and characterization of p70(S6 K beta) defines a novel family of p70 S6 kinases. Biochem Biophys Res Commun. 1998;253(2):470–6.CrossRefPubMedGoogle Scholar
  46. Sridharan S, Basu A. S6 kinase 2 promotes breast cancer cell survival via Akt. Cancer Res. 2011;71(7):2590–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tavares MR, Pavan ICB, Amaral CL, Meneguello L, Luchessi AD, Simabuco FM. The S6K protein family in health and disease. Life Sci. 2015;131:1–10.CrossRefPubMedGoogle Scholar
  48. Tremblay F, Brûlé S, Hee Um S, Li Y, Masuda K, Roden M, et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci USA. 2007;104(35):14056–61.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO J. 2001;20(16):4370–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wang M-L, Panasyuk G, Gwalter J, Nemazanyy I, Fenton T, Filonenko V, et al. Regulation of ribosomal protein S6 kinases by ubiquitination. Biochem Biophys Res Commun. 2008;369(2):382–7.CrossRefPubMedGoogle Scholar
  51. Wang F, Alain T, Szretter KJ, Stephenson K, Pol JG, Atherton MJ, et al. S6 K-STING interaction regulates cytosolic DNA-mediated activation of the transcription factor IRF3. Nat Immunol. 2016;17(5):514–22.CrossRefPubMedGoogle Scholar
  52. Weng QP, Kozlowski M, Belham C, Zhang A, Comb MJ, Avruch J. Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J Biol Chem. 1998;273(26):16621–9.CrossRefPubMedGoogle Scholar
  53. Wilson KF, WJ W, Cerione R. Cdc42 stimulates RNA splicing via the S6 kinase and a novel S6 kinase target, the nuclear cap-binding complex. J Biol Chem. 2000;275(48):37307–10.CrossRefPubMedGoogle Scholar
  54. Yamnik RL, Digilova A, Davis DC, Brodt ZN, Murphy CJ, Holz MK. S6 kinase 1 regulates estrogen receptor alpha in control of breast cancer cell proliferation. J Biol Chem. 2009;284(10):6361–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  • Isadora Carolina Betim Pavan
    • 1
  • Fernando Riback Silva
    • 1
  • Ana Paula Morelli
    • 1
  • Fernando Moreira Simabuco
    • 1
  1. 1.Laboratory of Metabolic Disorders, School of Applied SciencesUniversity of CampinasLimeiraBrazil