Skip to main content

DNAJB6

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 50 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andrews JF et al. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ. Exp Cell Res. 2012;318(10):1086–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrigo AP et al. Localization of the heat shock-induced proteins in Drosophila melanogaster tissue culture cells. Dev Biol. 1980;78(1):86–103.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SD et al. Osteopontin regulates epithelial mesenchymal transition-associated growth of hepatocellular cancer in a mouse xenograft model. Ann Surg. 2012;255(2):319–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheetham ME, Caplan AJ. Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones. 1998;3(1):28–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comerford KM et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 2002;62(12):3387–94.

    CAS  PubMed  Google Scholar 

  • Dai YS et al. The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Mol Cell Biol. 2005;25(22):9936–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bock CE et al. Interaction between urokinase receptor and heat shock protein MRJ enhances cell adhesion. Int J Oncol. 2010;36(5):1155–63.

    CAS  PubMed  Google Scholar 

  • Durrenberger PF et al. DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes. J Neurosci Res. 2009;87(1):238–45.

    Article  CAS  PubMed  Google Scholar 

  • Gillis J et al. The DNAJB6 and DNAJB8 protein chaperones prevent intracellular aggregation of polyglutamine peptides. J Biol Chem. 2013;288(24):17225–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hageman J et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell. 2010;37(3):355–69.

    Article  CAS  PubMed  Google Scholar 

  • Hanai R, Mashima K. Characterization of two isoforms of a human DnaJ homologue, HSJ2. Mol Biol Rep. 2003;30(3):149–53.

    Article  CAS  PubMed  Google Scholar 

  • Hunter PJ et al. Mrj encodes a DnaJ-related co-chaperone that is essential for murine placental development. Development. 1999;126(6):1247–58.

    CAS  PubMed  Google Scholar 

  • Hussein RM et al. Evaluation of the amyloid beta-GFP fusion protein as a model of amyloid beta peptides-mediated aggregation: a study of DNAJB6 chaperone. Front Mol Neurosci. 2015;8:40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnamachary B et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res. 2003;63(5):1138–43.

    CAS  PubMed  Google Scholar 

  • Masson C et al. Interaction of the molecular chaperone DNAJB6 with growing amyloid-beta 42 (Aβ42) aggregates leads to sub-stoichiometric inhibition of amyloid formation. J Biol Chem. 2014;289(5):31066–76.

    Article  Google Scholar 

  • Menezes ME et al. DNAJB6 governs a novel regulatory loop determining Wnt/beta-catenin signalling activity. Biochem J. 2012;444(3):573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra A et al. Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Res. 2008;10(2):R22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitra A et al. Multi-faceted role of HSP40 in cancer. Clin Exp Metastasis. 2009;26(6):559–67.

    Article  CAS  PubMed  Google Scholar 

  • Mitra A et al. DNAJB6 induces degradation of beta-catenin and causes partial reversal of mesenchymal phenotype. J Biol Chem. 2010;285(32):24686–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra A et al. DNAJB6 chaperones PP2A mediated dephosphorylation of GSK3beta to downregulate beta-catenin transcription target, osteopontin. Oncogene. 2012a;31(41):4472–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra A et al. Micro-RNA-632 downregulates DNAJB6 in breast cancer. Lab Investig. 2012b;92(9):1310–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 2004;63(3):467–75.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka K, Hata M. Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones. 2000;5(2):98–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose JM et al. Molecular chaperone-mediated rescue of mitophagy by a Parkin RING1 domain mutant. Hum Mol Genet. 2011;20(1):16–27.

    Article  CAS  PubMed  Google Scholar 

  • Ruggieri A et al. Complete loss of the DNAJB6 G/F domain and novel missense mutations cause distal-onset DNAJB6 myopathy. Acta Neuropathol Commun. 2015;3:44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarparanta J et al. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet. 2012;44(4):450–5 .S451–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971–83.

    Article  Google Scholar 

  • Varadarajan S et al. Review: Alzheimer’s amyloid β peptide associated free radical oxidative stress and neurotoxicity. J Struct Biol. 2000;130:184–208.

    Article  CAS  PubMed  Google Scholar 

  • Zhang TT et al. Overexpression of DNAJB6 promotes colorectal cancer cell invasion through an IQGAP1/ERK-dependent signaling pathway. Mol Carc. 2015;54:1205–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

NIH R01CA194048 grant to R.S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev S. Samant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Weeks, S.E., Bawage, S., Shevde, L.A., Samant, R.S. (2016). DNAJB6. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101779-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101779-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics