Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

EIF2S1

  • Karolina Pakos-Zebrucka
  • Adrienne M. Gorman
  • Chetan Chintha
  • Eric Chevet
  • Afshin Samali
  • Katarzyna Mnich
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101587-1

Synonyms

Historical Background

Phosphorylation and dephosphorylation of eukaryotic initiation factor 2α (eIF2α) control the initiation of mRNA translation in eukaryotic cells, particularly in response to cellular stress. Early studies on the role of initiation factors in translational control date back to the 1960s. In 1968, Miller and Schweet reported a decrease in reticulocyte ribosomal activity upon salt washing (Miller and Schweet 1968). This first observation led to the isolation of translation initiation factors from rabbit reticulocytes and liver ribosomes (Shafritz et al. 1970). Some years later, it was shown that the eukaryotic translation initiation factor eIF2 consists of three subunits: eIF2α, eIF2β, and eIF2γ (Schreier et al. 1977). In the same year, phosphorylation...

Keywords

Endoplasmic Reticulum Stress Unfold Protein Response Eukaryotic Translation Initiation Factor Integrate Stress Response Hypochromic Normocytic Anemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The work in our group is funded by Breast Cancer Campaign grant (2010NovPR13), Health Research Board (grant number HRA-POR-2014-643), Belgium Grant (IAP 7/32), a Science Foundation Ireland (SFI) grant co-funded under the European Regional Development Fund (grant Number 13/RC/2073), and EU H2020 MSCA ITN-675448 (TRAINERS). K.M. is funded by an Irish Research Council Fellowship (grant number GOIPD/2014/53).

References

  1. Bellato HM, Hajj GN. Translational control by eIF2alpha in neurons: beyond the stress response. Cytoskeleton. 2016;73:551–65.CrossRefPubMedGoogle Scholar
  2. Colthurst DR, Campbell DG, Proud CG. Structure and regulation of eukaryotic initiation factor eIF-2. Sequence of the site in the alpha subunit phosphorylated by the haem-controlled repressor and by the double-stranded RNA-activated inhibitor. Eur J Biochem/FEBS. 1987;166:357–63.CrossRefGoogle Scholar
  3. Devisscher L, Vieri M, Logue SE, Panse J, Geerts A, van Vlierberghe H, Chevet E, Gorman AM, Samali A, Kharabi Masouleh B. Targeting the angio-proteostasis network: combining the forces against cancer. Pharmacol Ther. 2016;167:1–12.CrossRefPubMedGoogle Scholar
  4. Dhaliwal S, Hoffman DW. The crystal structure of the N-terminal region of the alpha subunit of translation initiation factor 2 (eIF2alpha) from Saccharomyces cerevisiae provides a view of the loop containing serine 51, the target of the eIF2alpha-specific kinases. J Mol Biol. 2003;334:187–95.CrossRefPubMedGoogle Scholar
  5. Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci: CMLS. 2013;70:3493–511.CrossRefPubMedGoogle Scholar
  6. Ernst V, Levin DH, Leroux A, London IM. Site-specific phosphorylation of the alpha subunit of eukaryotic initiation factor eIF-2 by the heme-regulated and double-stranded RNA-activated eIF-2 alpha kinases from rabbit reticulocyte lysates. Proc Natl Acad Sci USA. 1980;77:1286–90.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Farrell PJ, Balkow K, Hunt T, Jackson RJ, Trachsel H. Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell. 1977;11:187–200.CrossRefPubMedGoogle Scholar
  8. Harding HP, Zhang Y, Scheuner D, Chen JJ, Kaufman RJ, Ron D. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc Natl Acad Sci USA. 2009;106:1832–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, Qiu B, Zhang H, Cerniglia G, Bi M, Li Y, Gao Y, Liu H, Li C, Maity A, Thomas-Tikhonenko A, Perl AE, Koong A, Fuchs SY, Diehl JA, Mills IG, Ruggero D, Koumenis C. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Investig. 2012;122:4621–34.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ito T, Marintchev A, Wagner G. Solution structure of human initiation factor eIF2alpha reveals homology to the elongation factor eEF1B. Structure. 2004;12:1693–704.CrossRefPubMedGoogle Scholar
  11. Jousse C, Oyadomari S, Novoa I, Lu P, Zhang Y, Harding HP, Ron D. Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J Cell Biol. 2003;163:767–75.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A, Wouters BG. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol. 2002;22:7405–16.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E, Pierre P, Cavener DR, Klann E. Suppression of eIF2alpha kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat Neurosci. 2013;16:1299–305.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Miller RL, Schweet R. Isolation of a protein fraction from reticulocyte ribosomes required for de novo synthesis of hemoglobin. Arch Biochem Biophys. 1968;125:632–46.CrossRefPubMedGoogle Scholar
  15. Nonato MC, Widom J, Clardy J. Crystal structure of the N-terminal segment of human eukaryotic translation initiation factor 2alpha. J Biol Chem. 2002;277:17057–61.CrossRefPubMedGoogle Scholar
  16. Pakos-Zebrucka K, Koryga I, Mnich K, Ljuic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016;17:1374–95. EMBO Reports.Google Scholar
  17. Pathak VK, Schindler D, Hershey JW. Generation of a mutant form of protein synthesis initiation factor eIF-2 lacking the site of phosphorylation by eIF-2 kinases. Mol Cell Biol. 1988;8:993–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S, Kaufman RJ. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7:1165–76.CrossRefPubMedGoogle Scholar
  19. Schreier MH, Erni B, Staehelin T. Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors. J Mol Biol. 1977;116:727–53.CrossRefPubMedGoogle Scholar
  20. Shafritz DA, Prichard PM, Gilbert JM, Anderson WF. Separation of two factors, M1 and M2, required for poly U dependent polypeptide synthesis by rabbit reticulocyte ribosomes at low magnesium ion concentration. Biochem Biophys Res Commun. 1970;38:721–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  • Karolina Pakos-Zebrucka
    • 1
  • Adrienne M. Gorman
    • 1
  • Chetan Chintha
    • 1
  • Eric Chevet
    • 2
  • Afshin Samali
    • 1
  • Katarzyna Mnich
    • 1
  1. 1.Apoptosis Research Centre, School of Natural SciencesNational University of Ireland GalwayGalwayIreland
  2. 2.Oncogenesis, Stress & Signaling LaboratoryCentre de Lutte Contre le Cancer Eugène, INSERM ERL440- Université Rennes 1RennesFrance