Skip to main content

CDK5

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 220 Accesses

Synonyms

CDK5; Cyclin-dependent kinase 5; NCLK; Neuronal CDC2-like kinase; AW048668; Crk6; CDC2-related kinase 6; PSSALRE kinase

Historical Background

Cyclin-dependent kinase 5 (CDK5), a proline-directed serine/threonine-protein kinase, was originally purified from bovine brain and defined as a neuronal CDC2 (CDK1)-like kinase (NCLK) (Roder and Ingram 1991; Hellmich et al. 1992). Later on, CDK5 demonstrated capability to induce the Alzheimer-like characteristics by phosphorylation of tau protein (Baumann et al. 1993). p35 (CDK5R1) was then characterized as a regulatory subunit of CDK5 to activate its kinase activity, with subsequent identification of its isoform p39 (CDK5R2) (Tsai et al. 1994; Tang et al. 1995). CDK5/p35 is the first example of a CDC2-like kinase with neuronal function. A truncated form of p35, p25, was purified with CDK5 as a hetero-dimer exhibiting activity in vitro and regarded as a novel regulatory subunit of CDK5 (Lew et al. 1994). Accumulation of p25 is found in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alvarez A, Toro R, Cáceres A, Maccioni RB. Inhibition of tau phosphorylating protein kinase cdk5 prevents β-amyloid-induced neuronal death. FEBS Lett. 1999;459:421–6.

    Article  CAS  PubMed  Google Scholar 

  • Amato AA, Rajagopalan S, Lin JZ, Carvalho BM, Figueira ACM, Lu J, et al. GQ-16, a novel peroxisome proliferator-activated receptor gamma (PPAR gamma) ligand, promotes insulin sensitization without weight gain. J Biol Chem. 2012;287:28169–79. doi:10.1074/jbc.M111.332106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada A, Yamamoto N, Gohda M, Saito T, Hayashi N, Hisanaga S. Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cycline-dependent kinase 5 complexes. J Neurochem. 2008;106:1325–36. doi:10.1111/j.1471-4159.2008.05500.x.

    Article  CAS  PubMed  Google Scholar 

  • Asada A, Saito T, Hisanaga S. Phosphorylation of p35 and p39 by Cdk5 determines the subcellular location of the holokinase in a phosphorylation-site-specific manner. J Cell Sci. 2012;125:3421–9. doi:10.1242/jcs.100503.

    Article  CAS  PubMed  Google Scholar 

  • Avraham E, Rott R, Liani E, Szargel R, Engelender S. Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation. J Biol Chem. 2007;282:12842–50.

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Wang Y. Methods to investigate the role of SIRT1 in endothelial senescence. Methods Mol Biol. 2013;965:327–39. doi:10.1007/978-1-62703-239-1_22.

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Liang Y, Xu C, Lee MY, Xu A, Wu D, et al. Cyclin-dependent kinase 5-mediated hyperphosphorylation of sirtuin-1 contributes to the development of endothelial senescence and atherosclerosis. Circulation. 2012;126:729–40. doi:10.1161/CIRCULATIONAHA.112.118778.

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Vanhoutte PM, Wang Y. Loss-of-SIRT1 function during vascular ageing: hyperphosphorylation mediated by cyclin-dependent kinase 5. Trends Cardiovasc Med. 2014;24:81–4. doi:10.1016/j.tcm.2013.07.001.

    Article  CAS  PubMed  Google Scholar 

  • Baumann K, Mandelkow E-M, Biernat J, Piwnica-Worms H, Mandelkow E. Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 1993;336:417–24.

    Article  CAS  PubMed  Google Scholar 

  • Benson C, White J, De Bono J, O’Donnell A, Raynaud F, Cruickshank C, et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer. 2007;96:29–37. doi:10.1038/sj.bjc.6603509.

    Article  CAS  PubMed  Google Scholar 

  • Bianchetta MJ, Lam TT, Jones SN, Morabito MA. Cyclin-dependent kinase 5 regulates PSD-95 ubiquitination in neurons. J Neurosci. 2011;31:12029–35. doi:10.1523/Jneurosci.2388-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, et al. Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature. 1999;402:669–71.

    Article  CAS  PubMed  Google Scholar 

  • Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, Snyder GL, et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature. 2001;410:376–80.

    Article  CAS  PubMed  Google Scholar 

  • Binukumar BK, Shukla V, Amin ND, Bhaskar M, Skuntz S, Steiner J, et al. Analysis of the inhibitory elements in the p5 peptide fragment of the CDK5 activator, p35, CDKR1 protein. J Alzheimers Dis. 2015;48:1009–17. doi:10.3233/Jad-150412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisht S, Nolting J, Schutte U, Haarmann J, Jain P, Shah D, et al. Cyclin-dependent kinase 5 (CDK5) controls melanoma cell motility, invasiveness, and metastatic spread-identification of a promising novel therapeutic target. Transl Oncol. 2015;8:295–307. doi:10.1016/j.tranon.2015.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bos JL, de Rooij J, Reedquist KA. Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol. 2001;2:369–77. doi:10.1038/35073073.

    Article  CAS  PubMed  Google Scholar 

  • Brandes RP, Fleming I, Busse R. Endothelial aging. Cardiovasc Res. 2005;66:286–94. doi:10.1016/j.cardiores.2004.12.027.

    Article  CAS  PubMed  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.

    Article  CAS  PubMed  Google Scholar 

  • Chang KH, De Pablo Y, HP L, HG L, Smith MA, Shah K. Cdk5 is a major regulator of p38 cascade: relevance to neurotoxicity in Alzheimer’s disease. J Neurochem. 2010;113:1221–9.

    CAS  PubMed  Google Scholar 

  • Chang KH, Multani PS, Sun KH, Vincent F, de Pablo Y, Ghosh S, et al. Nuclear envelope dispersion triggered by deregulated Cdk5 precedes neuronal death. Mol Biol Cell. 2011;22:1452–62. doi:10.1091/mbc.E10-07-0654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang KH, Vincent F, Shah K. Deregulated Cdk5 triggers aberrant activation of cell cycle kinases and phosphatases inducing neuronal death. J Cell Sci. 2012;125:5124–37. doi:10.1242/jcs.108183.

    Article  CAS  PubMed  Google Scholar 

  • Cheung ZH, Gong K, Ip NY. Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2. J Neurosci. 2008;28:4872–7. doi:10.1523/Jneurosci.0689-08.2008.

    Article  CAS  PubMed  Google Scholar 

  • Ching Y-P, Pang AS, Lam W-H, Qi RZ, Wang JH. Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor. J Biol Chem. 2002;277:15237–40.

    Article  CAS  PubMed  Google Scholar 

  • Cho DH, Seo J, Park JH, Jo C, Choi YJ, Soh JW, et al. Cyclin-dependent kinase 5 phosphorylates endothelial nitric oxide synthase at serine 116. Hypertension. 2010;55:345–52. doi:10.1161/HYPERTENSIONAHA.109.140210.

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Lee Y, Park KH, Sung JS, Lee JE, Shin ES, et al. Single-nucleotide polymorphisms in the promoter of the CDK5 gene and lung cancer risk in a Korean population. J Hum Genet. 2009;54:298–303. doi:10.1038/jhg.2009.29.

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature. 2010;466:451–6. doi:10.1038/nature09291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JH, Banks AS, Kamenecka TM, Busby SA, Chalmers MJ, Kumar N, et al. Antidiabetic actions of a non-agonist PPAR gamma ligand blocking Cdk5-mediated phosphorylation. Nature. 2011;477:477–U131. doi:10.1038/nature10383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow HM, Guo D, Zhou JC, Zhang GY, Li HF, Herrup K, et al. CDK5 activator protein p25 preferentially binds and activates GSK3beta. Proc Natl Acad Sci U S A. 2014;111:E4887–95. doi:10.1073/pnas.1402627111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicero S, Herrup K. Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation. J Neurosci. 2005;25:9658–68. doi:10.1523/Jneurosci.1773-05.2005.

    Article  CAS  PubMed  Google Scholar 

  • Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science. 1996;272:877–80.

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Vallejos E, Utreras E, Borquez DA, Prochazkova M, Terse A, Jaffe H, et al. Searching for novel Cdk5 substrates in brain by comparative phosphoproteomics of wild type and Cdk5−/− mice. PLoS One. 2014;9:e90363. doi:10.1371/journal.pone.0090363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cruz JC, Tsai LH. Cdk5 deregulation in the pathogenesis of Alzheimer’s disease. Trends Mol Med. 2004;10:452–8. doi:10.1016/j.molmed.2004.07.001.

    Article  CAS  PubMed  Google Scholar 

  • Cruz JC, Tseng H-C, Goldman JA, Shih H, Tsai L-H. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron. 2003;40:471–83.

    Article  CAS  PubMed  Google Scholar 

  • Czapski GA, GÄ…ssowska M, Wilkaniec A, CieÅ›lik M, Adamczyk A. Extracellular alpha-synuclein induces calpain-dependent overactivation of cyclin-dependent kinase 5 in vitro. FEBS Lett. 2013;587:3135–41.

    Article  CAS  PubMed  Google Scholar 

  • Daval M, Gurlo T, Costes S, Huang CJ, Butler PC. Cyclin-dependent kinase 5 promotes pancreatic beta-cell survival via Fak-Akt signaling pathways. Diabetes. 2011;60:1186–97. doi:10.2337/db10-1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickey CA, Koren J, Zhang YJ, Xu YF, Jinwal UK, Birnbaum MJ, et al. Akt and CHIP coregulate tau degradation through coordinated interactions. Proc Natl Acad Sci USA. 2008;105:3622–7. doi:10.1073/pnas.0709180105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draney C, Hobson AE, Grover SG, Jack BO, Tessem JS. Cdk5r1 overexpression induces primary beta-cell proliferation. J Diabetes Res. 2016;2016:6375804. doi:10.1155/2016/6375804.

    Article  PubMed  Google Scholar 

  • Ehrlich SM, Liebl J, Ardelt MA, Lehr T, De Toni EN, Mayr D, et al. Targeting cyclin dependent kinase 5 in hepatocellular carcinoma – a novel therapeutic approach. J Hepatol. 2015;63:102–13. doi:10.1016/j.jhep.2015.01.031.

    Article  CAS  PubMed  Google Scholar 

  • Erusalimsky JD. Vascular endothelial senescence: from mechanisms to pathophysiology. J Appl Physiol. 2009;106:326–32. doi:10.1152/japplphysiol.91353.2008.

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Junyent F, Verdaguer E, Auladell C, Pizarro JG, Beas-Zarate C, et al. Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox Res. 2012;22:195–207.

    Article  PubMed  Google Scholar 

  • Goodwin PR, Sasaki JM, Juo P. Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons. J Neurosci. 2012;32:8158–72. doi:10.1523/Jneurosci.0251-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodyear S, Sharma MC. Roscovitine regulates invasive breast cancer cell (MDA-MB231) proliferation and survival through cell cycle regulatory protein cdk5. Exp Mol Pathol. 2007;82:25–32.

    Article  CAS  PubMed  Google Scholar 

  • Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA. Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease. Brain Res. 1997;763:145–58. doi:10.1016/S0006-8993(97)00384-3.

    Article  CAS  PubMed  Google Scholar 

  • Harmon JS, Tanaka Y, Olson LK, Robertson RP. Reconstitution of glucotoxic HIT-T15 cells with somatostatin transcription factor-1 partially restores insulin promoter activity. Diabetes. 1998;47:900–4.

    Article  CAS  PubMed  Google Scholar 

  • Hellmich MR, Pant HC, Wada E, Battey JF. Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc Natl Acad Sci U S A. 1992;89:10867–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrup K, Yang Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci. 2007;8:368–78. doi:10.1038/nrn2124.

    Article  CAS  PubMed  Google Scholar 

  • Hilton GD, Stoica BA, Byrnes KR, Faden AI. Roscovitine reduces neuronal loss, glial activation, and neurologic deficits after brain trauma. J Cereb Blood Flow Metab. 2008;28:1845–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hisanaga S, Endo R. Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. J Neurochem. 2010;115:1309–21. doi:10.1111/j.1471-4159.2010.07050.x.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh WS, Soo R, Peh BK, Loh T, Dong D, Soh D, et al. Pharmacodynamic effects of seliciclib, an orally administered cell cycle modulator, in undifferentiated nasopharyngeal cancer. Clin Cancer Res. 2009;15:1435–42. doi:10.1158/1078-0432.CCR-08-1748.

    Article  CAS  PubMed  Google Scholar 

  • Hsu FN, Chen MC, Lin KC, Peng YT, Li PC, Lin E, et al. Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser(7)(2)(7) on STAT3 in prostate cancer cells. Am J Physiol Endocrinol Metab. 2013;305:E975–86. doi:10.1152/ajpendo.00615.2012.

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Rajfur Z, Yousefi N, Chen Z, Jacobson K, Ginsberg MH. Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nat Cell Biol. 2009;11:624–30. doi:10.1038/ncb1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang E, Qu D, Zhang Y, Venderova K, Haque ME, Rousseaux MW, et al. The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat Cell Biol. 2010;12:563–71.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Blasco D, Santofimia-Castano P, Gonzalez A, Almeida A, Bolanos JP. Astrocyte NMDA receptors’ activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ. 2015;22:1877–89. doi:10.1038/cdd.2015.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamei H, Saito T, Ozawa M, Fujita Y, Asada A, Bibb JA, et al. Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphorylation. J Biol Chem. 2007;282:1687–94. doi:10.1074/jbc.M610541200.

    Article  CAS  PubMed  Google Scholar 

  • Kawahara M. Neurotoxicity of β-amyloid protein: oligomerization, channel formation and calcium dyshomeostasis. Curr Pharm Des. 2010;16:2779–89.

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi T, Chihama K, Nishimura YV, Nabeshima Y, Hoshino M. MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK. Biochem Biophys Res Commun. 2005;331:50–5. doi:10.1016/j.bbrc.2005.03.132.

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi T, Chihama K, Nabeshima Y-i, Hoshino M. Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nat Cell Biol. 2006;8:17–26.

    Article  CAS  PubMed  Google Scholar 

  • Ke K, Shen J, Song Y, Cao M, Lu H, Liu C, et al. CDK5 contributes to neuronal apoptosis via promoting MEF2D phosphorylation in rat model of intracerebral hemorrhage. J Mol Neurosci. 2015;56:48–59. doi:10.1007/s12031-014-0466-5.

    Article  CAS  PubMed  Google Scholar 

  • Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC. Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta. 2004;1697:143–53. doi:10.1016/j.bbapap.2003.11.020.

    Article  CAS  PubMed  Google Scholar 

  • Kesavapany S, Zheng YL, Amin N, Pant HC. Peptides derived from Cdk5 activator p35, specifically inhibit deregulated activity of Cdk5. Biotechnol J. 2007;2:978–87. doi:10.1002/biot.200700057.

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Ryan TA. CDK5 serves as a major control point in neurotransmitter release. Neuron. 2010;67:797–809. doi:10.1016/j.neuron.2010.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Sung JY, Ceglia I, Lee KW, Ahn JH, Halford JM, et al. Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature. 2006;442:814–7. doi:10.1038/nature04976.

    Article  CAS  PubMed  Google Scholar 

  • Kim BS, Serebreni L, Fallica J, Hamdan O, Wang L, Johnston L, et al. Cyclin-dependent kinase five mediates activation of lung xanthine oxidoreductase in response to hypoxia. PLoS One. 2015;10:e0124189. doi:10.1371/journal.pone.0124189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai KO, Ip NY. Recent advances in understanding the roles of Cdk5 in synaptic plasticity. Biochim Biophys Acta. 2009;1792:741–5. doi:10.1016/j.bbadis.2009.05.001.

    Article  CAS  PubMed  Google Scholar 

  • Lai KO, Wong ASL, Cheung MC, Xu P, Liang ZY, Lok KC, et al. TrkB phosphorylation by Cdk5 is required for activity-dependent structural plasticity and spatial memory. Nat Neurosci. 2012;15:1506–15. doi:10.1038/nn.3237.

    Article  CAS  PubMed  Google Scholar 

  • Lalioti V, Muruais G, Dinarina A, van Damme J, Vandekerckhove J, Sandoval IV. The atypical kinase Cdk5 is activated by insulin, regulates the association between GLUT4 and E-Syt1, and modulates glucose transport in 3T3-L1 adipocytes. Proc Natl Acad Sci USA. 2009;106:4249–53. doi:10.1073/pnas.0900218106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau K-F, Howlett DR, Kesavapany S, Standen CL, Dingwall C, McLoughlin DM, et al. Cyclin-dependent kinase-5/p35 phosphorylates Presenilin 1 to regulate carboxy-terminal fragment stability. Mol Cell Neurosci. 2002;20:13–20.

    Article  CAS  PubMed  Google Scholar 

  • Le Tourneau C, Faivre S, Laurence V, Delbaldo C, Vera K, Girre V, et al. Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur J Cancer. 2010;46:3243–50. doi:10.1016/j.ejca.2010.08.001.

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Clark AW, Rosales JL, Chapman K, Fung T, Johnston RN. Elevated neuronal Cdc2-like kinase activity in the Alzheimer disease brain. Neurosci Res. 1999;34:21–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Kim H-S, Lee S-J, Kim K-T. Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death. J Cell Sci. 2007;120:2259–71.

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Jung H, Jang IH, Suh P-G, Ryu SH. Cdk5 phosphorylates PLD2 to mediate EGF-dependent insulin secretion. Cell Signal. 2008;20:1787–94. doi:10.1016/j.cellsig.2008.06.009.

    Article  CAS  PubMed  Google Scholar 

  • Lew J, Huang Q-Q, Qi Z, Winkfein RJ, Aebersold R, Hunt T, et al. A brain-specific activator of cyclin-dependent kinase 5. Nature. 1994;371(6496):423–6.

    Article  CAS  PubMed  Google Scholar 

  • Li BS, Zhang L, Takahashi S, Ma W, Jaffe H, Kulkarni AB, et al. Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J. 2002;21:324–33. doi:10.1093/emboj/21.3.324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li BS, Ma W, Jaffe H, Zheng YL, Takahashi S, Zhang L, et al. Cyclin-dependent kinase-5 is involved in neuregulin-dependent activation of phosphatidylinositol 3-kinase and Akt activity mediating neuronal survival. J Biol Chem. 2003;278:35702–9. doi:10.1074/jbc.M302004200.

    Article  CAS  PubMed  Google Scholar 

  • Liang Q, Li L, Zhang J, Lei Y, Wang L, Liu DX, et al. CDK5 is essential for TGF-beta1-induced epithelial-mesenchymal transition and breast cancer progression. Sci Report. 2013;3:2932. doi:10.1038/srep02932.

    Google Scholar 

  • Liebl J, Weitensteiner SB, Vereb G, Takacs L, Furst R, Vollmar AM, et al. Cyclin-dependent kinase 5 regulates endothelial cell migration and angiogenesis. J Biol Chem. 2010;285:35932–43. doi:10.1074/jbc.M110.126177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebl J, Zhang S, Moser M, Agalarov Y, Demir CS, Hager B, et al. Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat Commun. 2015;6:7274. doi:10.1038/ncomms8274.

    Article  CAS  PubMed  Google Scholar 

  • Lilja L, Johansson JU, Gromada J, Mandic SA, Fried G, Berggren PO, et al. Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. J Biol Chem. 2004;279:29534–41. doi:10.1074/jbc.M312711200.

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Tian B, Gearing M, Hunter S, Ye K, Mao Z. Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion. Proc Natl Acad Sci U S A. 2008;105:7570–5. doi:10.1073/pnas.0712306105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JL, Wang XY, Huang BX, Zhu F, Zhang RG, Wu G. Expression of CDK5/p35 in resected patients with non-small cell lung cancer: relation to prognosis. Med Oncol. 2011;28:673–8. doi:10.1007/s12032-010-9510-7.

    Article  PubMed  CAS  Google Scholar 

  • Liu SL, Wang C, Jiang T, Tan L, Xing A, Yu JT. The role of Cdk5 in Alzheimer’s disease. Mol Neurobiol. 2016;53:4328–42. doi:10.1007/s12035-015-9369-x.

    Article  CAS  PubMed  Google Scholar 

  • Lopes JP, Oliveira CR, Agostinho P. Cdk5 acts as a mediator of neuronal cell cycle re-entry triggered by amyloid-β and prion peptides. Cell Cycle. 2009;8:97–104.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, et al. Cyclin-dependent kinases: a family portrait. Nat Cell Biol. 2009;11:1275–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marra V, Burden JJ, Thorpe JR, Smith IT, Smith SL, Hausser M, et al. A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses. Neuron. 2012;76:579–89. doi:10.1016/j.neuron.2012.08.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem. 1997;243:527–36.

    Article  CAS  PubMed  Google Scholar 

  • Minegishi S, Asada A, Miyauchi S, Fuchigami T, Saito T, Hisanaga S. Membrane association facilitates degradation and cleavage of the cyclin-dependent kinase 5 activators p35 and p39. Biochemistry. 2010;49:5482–93. doi:10.1021/bi100631f.

    Article  CAS  PubMed  Google Scholar 

  • Mishiba T, Tanaka M, Mita N, He XJ, Sasamoto K, Itohara S, et al. Cdk5/p35 functions as a crucial regulator of spatial learning and memory. Mol Brain. 2014;7:82. doi:10.1186/s13041-014-0082-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitsios N, Pennucci R, Krupinski J, Sanfeliu C, Gaffney J, Kumar P, et al. Expression of cyclin-dependent kinase 5 mRNA and protein in the human brain following acute ischemic stroke. Brain Pathol. 2007;17:11–23. doi:10.1111/j.1750-3639.2006.00031.x.

    Article  CAS  PubMed  Google Scholar 

  • Miyajima M, Nornes HO, Neuman T. Cyclin-E is expressed in neurons and forms complexes with Cdk5. Neuroreport. 1995;6:1130–2. doi:10.1097/00001756-199505300-00014.

    Article  CAS  PubMed  Google Scholar 

  • Moorthamer M, Chaudhuri B. Identification of ribosomal protein L34 as a novel Cdk5 inhibitor. Biochem Biophys Res Commun. 1999;255:631–8.

    Article  CAS  PubMed  Google Scholar 

  • Moorthamer M, Zumstein-Mecker S, Chaudhuri B. DNA binding protein dbpA binds Cdk5 and inhibits its activity. FEBS Lett. 1999;446:343–50.

    Article  CAS  PubMed  Google Scholar 

  • Morabito MA, Sheng M, Tsai LH. Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J Neurosci. 2004;24:865–76. doi:10.1523/Jneurosci.4582-03.2004.

    Article  CAS  PubMed  Google Scholar 

  • Mouatt-Prigent A, Karlsson J, Agid Y, Hirsch E. Increased M-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience. 1996;73:979–87.

    Article  CAS  PubMed  Google Scholar 

  • Nagano T, Hashimoto T, Nakashima A, Hisanaga S-i, Kikkawa U, Kamada S. Cyclin I is involved in the regulation of cell cycle progression. Cell Cycle. 2013;12:2617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Kawamoto Y, Nakano S, Akiguchi I, Kimura J. p35nck5a and cyclin-dependent kinase 5 colocalize in Lewy bodies of brains with Parkinson’s disease. Acta Neuropathol. 1997;94:153–7.

    Article  CAS  PubMed  Google Scholar 

  • Nikolic M, Dudek H, Kwon YT, Ramos Y, Tsai L-H. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 1996;10:816–25.

    Article  CAS  PubMed  Google Scholar 

  • Nikolic M, Chou MM, Lu W, Mayer BJ, Tsai L-H. The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature. 1998;395:194–8.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura YV, Sekine K, Chihama K, Nakajima K, Hoshino M, Nabeshima Y, et al. Dissecting the factors involved in the locomotion mode of neuronal migration in the developing cerebral cortex. J Biol Chem. 2010;285:5878–87. doi:10.1074/jbc.M109.033761.

    Article  CAS  PubMed  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna, Pant HC, et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA. 1996;93:11173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohshima T, Ogawa M, Veeranna, Hirasawa M, Longenecker G, Ishiguro K, et al. Synergistic contributions of cyclin-dependant kinase 5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain. Proc Natl Acad Sci U S A. 2001;98:2764–9. doi:10.1073/pnas.051628498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohshima T, Ogawa M, Takeuchi K, Takahashi S, Kulkarni AB, Mikoshiba K. Cyclin-dependent kinase 5/p35 contributes synergistically with Reelin/Dab1 to the positioning of facial branchiomotor and inferior olive neurons in the developing mouse hindbrain. J Neurosci. 2002;22:4036–44.

    CAS  PubMed  Google Scholar 

  • Ohshima T, Ogura H, Tomizawa K, Hayashi K, Suzuki H, Saito T, et al. Impairment of hippocampal long-term depression and defective spatial learning and memory in p35 mice. J Neurochem. 2005;94:917–25. doi:10.1111/j.1471-4159.2005.03233.x.

    Article  CAS  PubMed  Google Scholar 

  • Okada S, Yamada E, Saito T, Ohshima K, Hashimoto K, Yamada M, et al. CDK5-dependent phosphorylation of the Rho family GTPase TC10(alpha) regulates insulin-stimulated GLUT4 translocation. J Biol Chem. 2008;283:35455–63. doi:10.1074/jbc.M806531200.

    Article  CAS  PubMed  Google Scholar 

  • Patrick GN, Zhou P, Kwon YT, Howley PM, Tsai L-H. p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem. 1998;273:24057–64.

    Article  CAS  PubMed  Google Scholar 

  • Patrick GN, Zukerberg L, Nikolic M, de La Monte S, Dikkes P, Tsai L-H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999;402:615–22.

    Article  CAS  PubMed  Google Scholar 

  • Patzke H, Tsai LH. Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J Biol Chem. 2002;277:8054–60. doi:10.1074/jbc.M109645200.

    Article  CAS  PubMed  Google Scholar 

  • Plattner F, Hernandez A, Kistler TM, Pozo K, Zhong P, Yuen EY, et al. Memory enhancement by targeting Cdk5 regulation of NR2B. Neuron. 2014;81:1070–83. doi:10.1016/j.neuron.2014.01.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozo K, Castro-Rivera E, Tan C, Plattner F, Schwach G, Siegl V, et al. The role of Cdk5 in neuroendocrine thyroid cancer. Cancer Cell. 2013;24:499–511. doi:10.1016/j.ccr.2013.08.027.

    Article  CAS  PubMed  Google Scholar 

  • Qu D, Li Q, Lim H-Y, Cheung NS, Li R, Wang JH, et al. The protein SET binds the neuronal Cdk5 activator p35 nck5a and modulates Cdk5/p35 nck5a activity. J Biol Chem. 2002;277:7324–32.

    Article  CAS  PubMed  Google Scholar 

  • Qu D, Rashidian J, Mount MP, Aleyasin H, Parsanejad M, Lira A, et al. Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease. Neuron. 2007;55:37–52.

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, Lipton SA. S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by β-amyloid peptide. Proc Natl Acad Sci USA. 2011;108:14330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu J, Nakamura T, Holland EA, McKercher SR, Lipton SA. S-nitrosylation of Cdk5: potential implications in amyloid-β-related neurotoxicity in Alzheimer disease. Prion. 2012;6:364–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid T, Banerjee M, Nikolic M. Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J Biol Chem. 2001;276:49043–52. doi:10.1074/jbc.M105599200.

    Article  CAS  PubMed  Google Scholar 

  • Roder H, Ingram V. Two novel kinases phosphorylate tau and the KSP site of heavy neurofilament subunits in high stoichiometric ratios. J Neurosci. 1991;11:3325–43.

    CAS  PubMed  Google Scholar 

  • Schubert S, Knoch KP, Ouwendijk J, Mohammed S, Bodrov Y, Jager M, et al. beta 2-Syntrophin is a Cdk5 substrate that restrains the motility of insulin secretory granules. Plos One. 2010;5:e12929. doi:10.1371/journal.pone.0012929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma MR, Tuszynski GP, Sharma MC. Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. J Cell Biochem. 2004;91:398–409. doi:10.1002/jcb.10762.

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Viccaro K, Lee H-g, Shah K. Cdk5–Foxo3 axis: initially neuroprotective, eventually neurodegenerative in Alzheimer’s disease models. J Cell Sci. 2016;129:1815–30.

    Article  CAS  Google Scholar 

  • Smith PD, Mount MP, Shree R, Callaghan S, Slack RS, Anisman H, et al. Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J Neurosci. 2006;26:440–7.

    Article  CAS  PubMed  Google Scholar 

  • Su SC, Seo J, Pan JQ, Samuels BA, Rudenko A, Ericsson M, et al. Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5. Neuron. 2012;75:675–87. doi:10.1016/j.neuron.2012.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaram JR, Poore CP, Bin Sulaimee NH, Pareek T, Asad ABMA, Rajkumar R, et al. Specific inhibition of p25/Cdk5 activity by the Cdk5 inhibitory peptide reduces neurodegeneration in vivo. J Neurosci. 2013;33:334–43. doi:10.1523/Jneurosci.3593-12.2013.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Ohshima T, Hirasawa M, Pareek TK, Bugge TH, Morozov A, et al. Conditional deletion of neuronal cyclin-dependent kinase 5 in developing forebrain results in microglial activation and neurodegeneration. Am J Pathol. 2010;176:320–9. doi:10.2353/ajpath.2010.081158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan TC, Valova VA, Malladi CS, Graham ME, Berven LA, Jupp OJ, et al. Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell Biol. 2003;5:701–10. doi:10.1038/ncb1020.

    Article  CAS  PubMed  Google Scholar 

  • Tanabe K, Yamazaki H, Inaguma Y, Asada A, Kimura T, Takahashi J, et al. Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration. PLoS One. 2014;9:e92291. doi:10.1371/journal.pone.0092291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka T, Serneo FF, Tseng HC, Kulkarni AB, Tsai LH, Gleeson JG. Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration. Neuron. 2004;41:215–27. doi:10.1016/S0896-6273(03)00852-3.

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Yeung J, Lee K-Y, Matsushita M, Matsui H, Tomizawa K, et al. An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem. 1995;270:26897–903.

    Article  CAS  PubMed  Google Scholar 

  • Tarricone C, Dhavan R, Peng J, Areces LB, Tsai L-H, Musacchio A. Structure and regulation of the CDK5-p25 nck5a complex. Mol Cell. 2001;8:657–69.

    Article  CAS  PubMed  Google Scholar 

  • Tomizawa K, Ohta J, Matsushita M, Moriwaki A, Li ST, Takei K, et al. Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J Neurosci. 2002;22:2590–7.

    CAS  PubMed  Google Scholar 

  • Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol. 2002;3:11–20. doi:10.1038/nrm714.

    Article  CAS  PubMed  Google Scholar 

  • Tsai L-H, Delalle I, Caviness VS, Chae T, Harlow E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature. 1994;371:5.

    Article  Google Scholar 

  • Tseng HC, Zhou Y, Shen Y, Tsai LH. A survey of Cdk5 activator p35 and p25 levels in Alzheimer’s disease brains. FEBS Lett. 2002;523:58–62.

    Article  CAS  PubMed  Google Scholar 

  • Ubeda M, Kemp DM, Habener JF. Glucose-induced expression of the cyclin-dependent protein kinase 5 activator p35 involved in Alzheimer’s disease regulates insulin gene transcription in pancreatic beta-cells. Endocrinology. 2004;145:3023–31. doi:10.1210/en.2003-1522.

    Article  CAS  PubMed  Google Scholar 

  • Ubeda M, Rukstalis JM, Habener JF. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem. 2006;281:28858–64. doi:10.1074/jbc.M604690200.

    Article  CAS  PubMed  Google Scholar 

  • Utreras E, Henriquez D, Contreras-Vallejos E, Olmos C, Di Genova A, Maass A, et al. Cdk5 regulates Rap1 activity. Neurochem Int. 2013;62:848–53. doi:10.1016/j.neuint.2013.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel S, Harlow E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science. 1993;262:2050–4.

    Article  PubMed  Google Scholar 

  • Wang Y, Liang Y, Vanhoutte PM. SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model. FEBS Lett. 2011;585:986–94. doi:10.1016/j.febslet.2010.11.047.

    Article  CAS  PubMed  Google Scholar 

  • Wei FY, Nagashima K, Ohshima T, Saheki Y, Lu YF, Matsushita M, et al. Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat Med. 2005;11:1104–8. doi:10.1038/nm1299.

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Yu WH, Maloney B, Bailey J, Ma J, Marié I, et al. Transcriptional regulation of β-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron. 2008;57:680–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkaniec A, Czapski GA, Adamczyk A. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses. J Neurochem. 2016;136:222–33.

    Article  CAS  PubMed  Google Scholar 

  • Wong AS, Lee RH, Cheung AY, Yeung PK, Chung SK, Cheung ZH, et al. Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson’s disease. Nat Cell Biol. 2011;13:568–79.

    Article  CAS  PubMed  Google Scholar 

  • Xie ZG, Sanada K, Samuels BA, Shih H, Tsai LH. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell. 2003;114:469–82. doi:10.1016/S0092-8674(03)00605-6.

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Liu C, Wu D, Li Z, Li C, Zhang Y. Phosphorylation of kinase insert domain receptor by cyclin-dependent kinase 5 at serine 229 is associated with invasive behavior and poor prognosis in prolactin pituitary adenomas. Oncotarget. 2016; doi:10.18632/oncotarget.10550.

    Google Scholar 

  • Xu J, Kurup P, Zhang YF, Goebel-Goody SM, Wu PH, Hawasli AH, et al. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci. 2009;29:9330–43. doi:10.1523/Jneurosci.2212-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S. Gene amplifications at chromosome 7 of the human gastric cancer genome. Int J Mol Med. 2007;20:225–31.

    CAS  PubMed  Google Scholar 

  • Ye T, Ip JP, Fu AK, Ip NY. Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex. Nat Commun. 2014;5:4826. doi:10.1038/ncomms5826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildiz-Unal A, Korulu S, Karabay A. Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatr Dis Treat. 2015;11:297–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Herrup K. Nucleocytoplasmic Cdk5 is involved in neuronal cell cycle and death in post-mitotic neurons. Cell Cycle. 2011;10:1208–14.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Cicero SA, Wang L, Romito-DiGiacomo RR, Yang Y, Herrup K. Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons. Proc Natl Acad Sci USA. 2008;105:8772–7. doi:10.1073/pnas.0711355105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li H, Herrup K. Cdk5 nuclear localization is p27-dependent in nerve cells implications for cell cycle suppression and caspase-3 activation. J Biol Chem. 2010a;285:14052–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li H, Yabut O, Fitzpatrick H, D’Arcangelo G, Herrup K. Cdk5 suppresses the neuronal cell cycle by disrupting the E2F1-DP1 complex. J Neurosci. 2010b;30:5219–28. doi:10.1523/JNEUROSCI.5628-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhong T, Dang Y, Li Z, Li P, Chen G. Aberrant expression of CDK5 infers poor outcomes for nasopharyngeal carcinoma patients. Int J Clin Exp Pathol. 2015;8:8066–74.

    PubMed  PubMed Central  Google Scholar 

  • Zheng YL, Kesavapany S, Gravell M, Hamilton RS, Schubert M, Amin N, et al. A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J. 2005;24:209–20. doi:10.1038/sj.emboj.7600441.

    Article  CAS  PubMed  Google Scholar 

  • Zheng YL, Li BS, Kanungo J, Kesavapany S, Amin N, Grant P, et al. Cdk5 modulation of mitogen-activated protein kinase signaling regulates neuronal survival. Mol Biol Cell. 2007;18:404–13. doi:10.1091/mbc.E06-09-0851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng YL, Li CY, Hu YF, Cao L, Wang H, Li B, et al. Cdk5 Inhibitory Peptide (CIP) Inhibits Cdk5/p25 Activity Induced by High Glucose in Pancreatic Beta Cells and Recovers Insulin Secretion from p25 Damage. Plos One. 2013;8:e63332. doi:10.1371/journal.pone.0063332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zu Y, Liu L, Lee MY, Xu C, Liang Y, Man RY, et al. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res. 2010;106:1384–93. doi:10.1161/CIRCRESAHA.109.215483.

    Article  CAS  PubMed  Google Scholar 

  • Zukerberg LR, Patrick GN, Nikolic M, Humbert S, Wu C-L, Lanier LM, et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron. 2000;26:633–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Guo, Y., Wang, Y., Bai, B. (2016). CDK5. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101554-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101554-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics