Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi


  • Xiaomin Song
  • Lin LiEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101525-1


Historical Background

A fundamental process in embryonic development is the establishment of body axes, including the anteroposterior (A-P) axis, the dorsoventral (D-V) axis, and the left-right (L-R) axis. Back to 1940s, when signaling pathways and molecular mechanisms behind axis formation remained a mystery, a spontaneous mutation called Kinky (FuKi) at the mouse Fused locus attracted attention due to its impact on a variety of developmental processes, especially on the formation of embryonic A-P axis(Gluecksohn-Schoenheimer 1949). Around 1990s, two other spontaneous alleles of the mouse Fused gene, Fused (FuFu) and Knobbly (FuKb), and one transgenic insertional mutant FuTg1 were identified (Jacobs-Cohen et al. 1984; Perry et al. 1995; Mary et al. 1996), all showing defects in the formation of embryonic axis. These Axinnull mutants normally led to lethality at embryonic day 8–10, and in addition to causing embryonic axis duplications, they also led to...


Embryonic Axis Destruction Complex Tumor Suppressor Adenomatous Polyposis Coli Axin Protein Suppressor Adenomatous Polyposis Coli 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998;280:596–9.CrossRefPubMedGoogle Scholar
  2. Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 2007;316:1619–22. doi:10.1126/science.1137065.CrossRefPubMedGoogle Scholar
  3. Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, et al. Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLoS One. 2011;6:e22595. doi:10.1371/journal.pone.0022595.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science. 2005;310:1504–10.doi:10.1126/science.1116221.CrossRefPubMedGoogle Scholar
  5. Cha B, Kim W, Kim YK, Hwang BN, Park SY, Yoon JW, et al. Methylation by protein arginine methyltransferase 1 increases stability of Axin, a negative regulator of Wnt signaling. Oncogene. 2011;30:2379–89. doi:10.1038/onc.2010.610.CrossRefPubMedGoogle Scholar
  6. Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 2009;5:100–7. doi:10.1038/nchembio.137.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Choi SH, Choi KM, Ahn HJ. Coexpression and protein-protein complexing of DIX domains of human Dvl1 and Axin1 protein. BMB Rep. 2010;43:609–13. doi:10.5483/BMBRep.2010.43.9.609.CrossRefPubMedGoogle Scholar
  8. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205. doi:10.1016/j.cell.2012.05.012.CrossRefPubMedGoogle Scholar
  9. Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, et al. Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature. 2005;438:867–72. doi:10.1038/nature04170.CrossRefPubMedGoogle Scholar
  10. Fagotto F, Funayama N, Gluck U, Gumbiner BM. Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in Xenopus. J Cell Biol. 1996;132:1105–14.CrossRefPubMedGoogle Scholar
  11. Fang WQ, Ip JP, Li R, Ng YP, Lin SC, Chen Y, et al. Cdk5-mediated phosphorylation of Axin directs axon formation during cerebral cortex development. J Neurosci. 2011;31:13613–24. doi:10.1523/JNEUROSCI.3120-11.2011.CrossRefPubMedGoogle Scholar
  12. Fei C, Li Z, Li C, Chen Y, Chen Z, He X, et al. Smurf1-mediated Lys29-linked Non-proteolytic Poly-ubiquitination of Axin Negatively Regulates Wnt/beta-catenin Signaling. Mol Cell Biol. 2013; doi:10.1128/MCB.00418-13.PubMedPubMedCentralGoogle Scholar
  13. Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M. Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating beta-catenin. Proc Natl Acad Sci USA. 2011;108:1937–42. doi:10.1073/pnas.1017063108.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y, et al. Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol. 2001;21:5132–41. doi:10.1128/MCB.21.15.5132-5141.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM. Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc Natl Acad Sci USA. 2002;99:1182–7. doi:10.1073/pnas.032468199.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gluecksohn-Schoenheimer S. The effects of a lethal mutation responsible for duplications and twinning in mouse embryos. J Exp Zool. 1949;110:47–76.CrossRefPubMedGoogle Scholar
  17. Guo X, Ramirez A, Waddell DS, Li Z, Liu X, Wang XF. Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling. Genes Dev. 2008;22:106–20. doi:10.1101/gad.1590908.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gwak J, Hwang SG, Park HS, Choi SR, Park SH, Kim H, et al. Small molecule-based disruption of the Axin/beta-catenin protein complex regulates mesenchymal stem cell differentiation. Cell Res. 2012;22:237–47. doi:10.1038/cr.2011.127.CrossRefPubMedGoogle Scholar
  19. Hart MJ, de los Santos R, IN A, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998;8:573–81.CrossRefPubMedGoogle Scholar
  20. Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B, McCrea P, et al. Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell. 1994;79:791–803.CrossRefPubMedGoogle Scholar
  21. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20. doi:10.1038/nature08356.CrossRefPubMedGoogle Scholar
  22. Hughes TA, Brady HJ. Regulation of axin2 expression at the levels of transcription, translation and protein stability in lung and colon cancer. Cancer Lett. 2006;233:338–47. doi:10.1016/j.canlet.2005.03.026.CrossRefPubMedGoogle Scholar
  23. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998;17:1371–84. doi:10.1093/emboj/17.5.1371.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Itoh K, Krupnik VE, Sokol SY. Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin. Curr Biol. 1998;8:591–4.CrossRefPubMedGoogle Scholar
  25. Jacobs-Cohen RJ, Spiegelman M, Cookingham JC, Bennett D. Knobbly, a new dominant mutation in the mouse that affects embryonic ectoderm organization. Genet Res. 1984;43:43–50.CrossRefPubMedGoogle Scholar
  26. James RG, Davidson KC, Bosch KA, Biechele TL, Robin NC, Taylor RJ, et al. WIKI4, a novel inhibitor of tankyrase and Wnt/ss-catenin signaling. PLoS One. 2012;7:e50457. doi:10.1371/journal.pone.0050457.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jho E, Lomvardas S, Costantini F. A GSK3beta phosphorylation site in axin modulates interaction with beta-catenin and Tcf-mediated gene expression. Biochem Biophys Res Commun. 1999;266:28–35. doi:10.1006/bbrc.1999.1760.CrossRefPubMedGoogle Scholar
  28. Kanzaki H, Ouchida M, Hanafusa H, Yano M, Suzuki H, Aoe M, et al. Single nucleotide polymorphism of the AXIN2 gene is preferentially associated with human lung cancer risk in a Japanese population. Int J Mol Med. 2006;18:279–84.PubMedGoogle Scholar
  29. Kikuchi A. Roles of Axin in the Wnt signalling pathway. Cell Signal. 1999;11:777–88.CrossRefPubMedGoogle Scholar
  30. Kim MJ, Chia IV, Costantini F. SUMOylation target sites at the C terminus protect Axin from ubiquitination and confer protein stability. FASEB J. 2008;22:3785–94. doi:10.1096/fj.08-113910.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim S, Jho EH. The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). J Biol Chem. 2010;285:36420–6. doi:10.1074/jbc.M110.137471.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim SE, Huang H, Zhao M, Zhang X, Zhang A, Semonov MV, et al. Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies. Science. 2013;340:867–70. doi:10.1126/science.1232389.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kim SI, Park CS, Lee MS, Kwon MS, Jho EH, Song WK. Cyclin-dependent kinase 2 regulates the interaction of Axin with beta-catenin. Biochem Biophys Res Commun. 2004;317:478–83. doi:10.1016/j.bbrc.2004.03.065.CrossRefPubMedGoogle Scholar
  34. Kishida S, Yamamoto H, Ikeda S, Kishida M, Sakamoto I, Koyama S, et al. Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J Biol Chem. 1998;273:10823–6.CrossRefPubMedGoogle Scholar
  35. Kusano S, Raab-Traub N. I-mfa domain proteins interact with Axin and affect its regulation of the Wnt and c-Jun N-terminal kinase signaling pathways. Mol Cell Biol. 2002;22:6393–405.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004;74:1043–50. doi:10.1086/386293.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 2013;73:3132–44. doi:10.1158/0008-5472.CAN-12-4562.CrossRefPubMedGoogle Scholar
  38. Li L, Yuan H, Weaver CD, Mao J, Farr 3rd GH, Sussman DJ, et al. Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J. 1999;18:4233–40. doi:10.1093/emboj/18.15.4233.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li Q, Lin S, Wang X, Lian G, Lu Z, Guo H, et al. Axin determines cell fate by controlling the p53 activation threshold after DNA damage. Nat Cell Biol. 2009;11:1128–34.CrossRefPubMedGoogle Scholar
  40. Li Q, He Y, Wei L, Wu X, Wu D, Lin S, et al. AXIN is an essential co-activator for the promyelocytic leukemia protein in p53 activation. Oncogene. 2011;30:1194–204. doi:10.1038/onc.2010.499.Google Scholar
  41. Li Q, Wang X, Wu X, Rui Y, Liu W, Wang J, et al. Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res. 2007;67:66–74. doi:10.1158/0008-5472.CAN-06-1671.CrossRefPubMedGoogle Scholar
  42. Liu W, Rui H, Wang J, Lin S, He Y, Chen M, et al. Axin is a scaffold protein in TGF-beta signaling that promotes degradation of Smad7 by Arkadia. EMBO J. 2006;25:1646–58. doi:10.1038/sj.emboj.7601057.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lui TT, Lacroix C, Ahmed SM, Goldenberg SJ, Leach CA, Daulat AM, et al. The ubiquitin-specific protease USP34 regulates axin stability and Wnt/beta-catenin signaling. Mol Cell Biol. 2011;31:2053–65. doi:10.1128/MCB.01094-10.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Luo W, Ng WW, Jin LH, Ye Z, Han J, Lin SC. Axin utilizes distinct regions for competitive MEKK1 and MEKK4 binding and JNK activation. J Biol Chem. 2003;278:37451–8. doi:10.1074/jbc.M305277200.CrossRefPubMedGoogle Scholar
  45. Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R, et al. Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. EMBO J. 2007;26:1511–21. doi:10.1038/sj.emboj.7601607.CrossRefPubMedPubMedCentralGoogle Scholar
  46. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26. doi:10.1016/j.devcel.2009.06.016.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mai M, Qian C, Yokomizo A, Smith DI, Liu W. Cloning of the human homolog of conductin (AXIN2), a gene mapping to chromosome 17q23-q24. Genomics. 1999;55:341–4. doi:10.1006/geno.1998.5650.CrossRefPubMedGoogle Scholar
  48. Mao J, Wang J, Liu B, Pan W, Farr 3rd GH, Flynn C, et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell. 2001;7:801–9.CrossRefPubMedGoogle Scholar
  49. Lyon MF, Rastan S, Brown SDM, editors. Genetic variants and strains of the laboratory mouse. Oxford: Oxford University Press; 1996.Google Scholar
  50. Miller JR, Moon RT. Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev. 1996;10:2527–39.CrossRefPubMedGoogle Scholar
  51. Miyaki M, Konishi M, Kikuchi-Yanoshita R, Enomoto M, Igari T, Tanaka K, et al. Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 1994;54:3011–20.PubMedGoogle Scholar
  52. Morrone S, Cheng Z, Moon RT, Cong F, Xu W. Crystal structure of a Tankyrase-Axin complex and its implications for Axin turnover and Tankyrase substrate recruitment. Proc Natl Acad Sci USA. 2012;109:1500–5. doi:10.1073/pnas.1116618109.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog. 2011;10:5. doi:10.4103/1477-3163.78111.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nakamura T, Hamada F, Ishidate T, Anai K, Kawahara K, Toyoshima K, et al. Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3beta and APC and reduces the beta-catenin level. Genes Cells. 1998;3:395–403.CrossRefPubMedGoogle Scholar
  55. Noutsou M, Duarte AM, Anvarian Z, Didenko T, Minde DP, Kuper I, et al. Critical scaffolding regions of the tumor suppressor Axin1 are natively unfolded. J Mol Biol. 2011;405:773–86. doi:10.1016/j.jmb.2010.11.013.CrossRefPubMedGoogle Scholar
  56. Ozaki S, Ikeda S, Ishizaki Y, Kurihara T, Tokumoto N, Iseki M, et al. Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer. Oncol Rep. 2005;14:1437–43.PubMedGoogle Scholar
  57. Parveen N, Hussain MU, Pandith AA, Mudassar S. Diversity of axin in signaling pathways and its relation to colorectal cancer. Med Oncol. 2011;28(Suppl 1):S259–67. doi:10.1007/s12032-010-9722-x.CrossRefPubMedGoogle Scholar
  58. Perry 3rd WL, Vasicek TJ, Lee JJ, Rossi JM, Zeng L, Zhang T, et al. Phenotypic and molecular analysis of a transgenic insertional allele of the mouse Fused locus. Genetics. 1995;141:321–32.PubMedGoogle Scholar
  59. Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol 2012;4. doi:10.1101/cshperspect.a008052.Google Scholar
  60. Rui HL, Fan E, Zhou HM, Xu Z, Zhang Y, Lin SC. SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. J Biol Chem. 2002;277:42981–6. doi:10.1074/jbc.M208099200.CrossRefPubMedGoogle Scholar
  61. Rui Y, Xu Z, Lin S, Li Q, Rui H, Luo W, et al. Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J. 2004;23:4583–94. doi:10.1038/sj.emboj.7600475.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sakanaka C, Weiss JB, Williams LT. Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proc Natl Acad Sci U S A. 1998;95:3020–3.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y, et al. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol. 2007;14:484–92. doi:10.1038/nsmb1247.CrossRefPubMedGoogle Scholar
  64. Shibata N, Tomimoto Y, Hanamura T, Yamamoto R, Ueda M, Ueda Y, et al. Crystallization and preliminary X-ray crystallographic studies of the axin DIX domain. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63:529–31. doi:10.1107/S1744309107022579.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Smalley MJ, Sara E, Paterson H, Naylor S, Cook D, Jayatilake H, et al. Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J. 1999;18:2823–35. doi:10.1093/emboj/18.10.2823.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Song X, Wang S, Li L. New insights into the regulation of Axin function in canonical Wnt signaling pathway. Protein Cell. 2014;5:186–93. doi:10.1007/s13238-014-0019-2.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Spink KE, Polakis P, Weis WI. Structural basis of the Axin-adenomatous polyposis coli interaction. EMBO J. 2000;19:2270–9. doi:10.1093/emboj/19.10.2270.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Strovel ET, Wu D, Sussman DJ. Protein phosphatase 2Calpha dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem. 2000;275:2399–403.CrossRefPubMedGoogle Scholar
  69. Taniguchi K, Roberts LR, Aderca IN, Dong X, Qian C, Murphy LM, et al. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene. 2002;21:4863–71. doi:10.1038/sj.onc.1205591.CrossRefPubMedGoogle Scholar
  70. Waaler J, Machon O, Tumova L, Dinh H, Korinek V, Wilson SR, et al. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res. 2012;72:2822–32. doi:10.1158/0008-5472.CAN-11-3336.CrossRefPubMedGoogle Scholar
  71. Wang S, Yin J, Chen D, Nie F, Song X, Fei C, et al. Small-molecule modulation of Wnt signaling via modulating the Axin-LRP5/6 interaction. Nat Chem Biol. 2013;9:579–85. doi:10.1038/nchembio.1309.CrossRefPubMedGoogle Scholar
  72. Willert K, Shibamoto S, Nusse R. Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev. 1999;13:1768–73.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem. 1999;274:10681–4.CrossRefPubMedGoogle Scholar
  74. Yamamoto H, Kishida S, Uochi T, Ikeda S, Koyama S, Asashima M, et al. Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol. 1998;18:2867–75.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yang LH, Xu HT, Li QC, Jiang GY, Zhang XP, Zhao HY, et al. Abnormal hypermethylation and clinicopathological significance of Axin gene in lung cancer. Tumour Biol. 2013;34:749–57. doi:10.1007/s13277-012-0604-z.CrossRefPubMedGoogle Scholar
  76. Yardy GW, Bicknell DC, Wilding JL, Bartlett S, Liu Y, Winney B, et al. Mutations in the AXIN1 gene in advanced prostate cancer. Eur Urol. 2009;56:486–94. doi:10.1016/j.eururo.2008.05.029.CrossRefPubMedGoogle Scholar
  77. Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry 3rd WL, et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell. 1997;90:181–92.CrossRefPubMedGoogle Scholar
  78. Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438:873–7. doi:10.1038/nature04185.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, et al. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol. 2011;13:623–9. doi:10.1038/ncb2222.CrossRefPubMedGoogle Scholar
  80. Zhang Y, Neo SY, Wang X, Han J, Lin SC. Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal kinase/stress-activated protein kinase through domains distinct from Wnt signaling. J Biol Chem. 1999;274:35247–54.CrossRefPubMedGoogle Scholar
  81. Zhang YL, Guo H, Zhang CS, Lin SY, Yin Z, Peng Y, et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 2013;18:546–55. doi:10.1016/j.cmet.2013.09.005.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina