Skip to main content

Toll-Like Receptors: Evolution and Structure

  • Living reference work entry
  • First Online:
  • 294 Accesses

Synopsis

Toll-like receptors (TLRs) recognize a variety of evolutionarily conserved microbial molecules called pathogen-associated molecular patterns (PAMPs) to initiate an intracellular signaling cascade that activates the innate immune response. First identified in Drosophila, TLRs were found to be conserved in humans where they activate the NF-κB transcription factor and thus its downstream targets. To date, 10 human Toll-like receptors (13 in mice) have been characterized and recognize diverse molecules including lipopeptides, viral dsRNA, lipopolysaccharide (LPS), bacterial flagellin, viral or bacterial ssRNA, and CpG-rich unmethylated DNA. Each TLR is an evolutionarily conserved type-I integral membrane glycoprotein consisting of an N-terminal ligand recognition domain (TLR-ECD), a single transmembrane helix that contains approximately 20 uncharged, mostly hydrophobic residues, and a C-terminal cytoplasmic signaling domain, known as the TIR domain. Named for its homology with...

This is a preview of subscription content, log in via an institution.

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738. doi:10.1038/35099560

    Article  CAS  PubMed  Google Scholar 

  • Anderson KV, Bokla L, Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: induction of polarity by the Toll gene product. Cell 42:791–798

    Article  CAS  PubMed  Google Scholar 

  • Bauer S, Wagner H (2002) Bacterial CpG-DNA licenses TLR9. Curr Top Microbiol Immunol 270:145–154

    CAS  PubMed  Google Scholar 

  • Bell JK, Mullen GED, Leifer CA et al (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24:528–533

    Article  CAS  PubMed  Google Scholar 

  • Bell JK, Botos I, Hall PR et al (2005) The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc Natl Acad Sci U S A 102:10976–10980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Botos I, Segal DM, Davies DR (2011) The structural biology of Toll-like receptors. Structure 19:447–459. doi:10.1016/j.str.2011.02.004 (S0969-2126(11)00072-4 [pii]\r)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buchanan SGSC, Gay NJ (1996) Structural and functional diversity in the leucine-rich repeat family of proteins. Prog Biophys Mol Biol 65:1–44

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Schiff M, Caplan JL et al (2007) A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5:0501–0514

    Article  Google Scholar 

  • Chuang TH, Ulevitch RJ (2000) Cloning and characterization of a sub-family of human Toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 11:372–378

    CAS  PubMed  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103. doi:10.1038/35074106

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Kaisho T, Takeuchi O et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    Article  CAS  PubMed  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the LPS gene product. J Immunol 162:3749–3752

    CAS  PubMed  Google Scholar 

  • Janeway CA (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13

    Google Scholar 

  • Janeway CJ, Travers P, Walport M, Shlomchik MJ (2005) Immunobiology: the immune system in health and disease, 6th edn. Garland Science, New York

    Google Scholar 

  • Jin MS, Kim SE, Heo JY et al (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Kang JY, Nan X, Jin MS et al (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31:873–884

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Kawai T, Akira S (2009) Pathogen recognition in the innate immune response. Biochem J 420:1–16

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L et al (1996) The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the spa potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  CAS  PubMed  Google Scholar 

  • Matsushima N, Tanaka T, Enkhbayar P et al (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate Toll-like receptors. BMC Genomics 8:124

    Article  PubMed Central  PubMed  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  PubMed  Google Scholar 

  • Ozinsky A, Underhill DM, Fontenot JD et al (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci U S A 97:13766–13771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park BS, Song DH, Kim HM et al (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–1195

    Article  CAS  PubMed  Google Scholar 

  • Poltorak A, He X, Smirnova I et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  PubMed  Google Scholar 

  • Roach JC, Glusman G, Rowen L et al (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102:9577–9582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider DS, Jin Y, Morisato D, Anderson KV (1994) A processed form of the Spatzle protein defines dorsal-ventral polarity in the Drosophila embryo. Dev Biol 120:1243–1250

    CAS  Google Scholar 

  • Takahashi N, Takahashi Y, Putnam FW (1985) Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich alpha 2-glycoprotein of human serum. Proc Natl Acad Sci U S A 82:1906–1910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanji H, Ohto U, Shibata T et al (2013) Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 339:1426–1429

    Article  CAS  PubMed  Google Scholar 

  • Yang RB, Mark MR, Gray A, Huang A (1998) TLR2 mediates LPS-induced cellular signaling. Nature 395:284–288

    Article  CAS  PubMed  Google Scholar 

  • Yoon S-I, Kurnasov O, Natarajan V et al (2012) Structural basis of TLR5-flagellin recognition and signaling. Science 335:859–864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Marion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Marion, J. (2014). Toll-Like Receptors: Evolution and Structure. In: Wells, R., Bond, J., Klinman, J., Masters, B., Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_816-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_816-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics