Skip to main content

Roles of Post-translational Modifications in DNA Double-Strand Break Repair

  • Living reference work entry
  • First Online:
Molecular Life Sciences

Synopsis

Genomic integrity is constantly challenged by DNA lesions, several thousands of which occur in each human cell every day. A particularly hazardous type of DNA lesion is the double-strand break (DSB), which can lead to large genetic alterations if not repaired accurately. To cope with DSBs, cells have evolved three highly conserved repair mechanisms: homologous recombination (HR), non-homologous end joining (NHEJ), and telomere addition. These competing mechanisms can lead to different outcomes, and all are tightly regulated at the levels of pathway choice and repair efficiency. Increasing evidence highlights the important roles of post-translational modifications (PTMs) in this regulation. This essay summarizes the current understanding of how PTMs contribute to DSB repair, with an emphasis on the most recent progress in the field.

Introduction

Among the three pathways that heal DSBs, HR can be the most faithful form of repair. HR begins with a two-stage 5′–3′ resection of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25:409–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Chen X, Niu H, Chung WH, Zhu Z, Papusha A, Shim EY, Lee SE, Sung P, Ira G (2011) Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat Struct Mol Biol 18:1015–1019

    Article  PubMed Central  PubMed  Google Scholar 

  3. Flott S, Kwon Y, Pigli YZ, Rice PA, Sung P, Jackson SP (2011) Regulation of Rad51 function by phosphorylation. EMBO Rep 12:833–839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Matos J, Blanco MG, Maslen S, Skehel JM, West SC (2011) Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147:158–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467

    Article  CAS  PubMed  Google Scholar 

  6. Nagai S, Davoodi N, Gasser SM (2011) Nuclear organization in genome stability: SUMO connections. Cell Res 21:474–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA (2010) ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141:970–981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kaidi A, Weinert BT, Choudhary C, Jackson SP (2010) Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329:1348–1353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, Oldani A, Minucci S et al (2011) HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471:74–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Park S, Patterson EE, Cobb J, Audhya A, Gartenberg MR, Fox CA (2011) Palmitoylation controls the dynamics of budding-yeast heterochromatin via the telomere-binding protein Rif1. Proc Natl Acad Sci U S A 108:14572–14577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolan Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Sarangi, P., Zhao, X. (2014). Roles of Post-translational Modifications in DNA Double-Strand Break Repair. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_79-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_79-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics