Skip to main content

Signal Recognition in Lower Organisms: Light-Induced Control of Cell Movement in the Ciliates Blepharisma and Stentor

  • Living reference work entry
  • First Online:
Molecular Life Sciences

Synopsis

Unicellular organisms, such as related ciliates Blepharisma and Stentor, show a number of light-induced motile responses to spatial and temporal variations in the photic environment. Thanks to these photosensory capabilities, in unevenly lighted areas both species accumulate in places of optimal light intensity (photodispersal) most suitable for their growth, survival, and development. Both microorganisms lack clearly specified sense organs, as are found in multicellular organisms, however they bear conspicuous subpellicular granules (photoreceptive units) able to perceive the quantity and quality of light. The absorption of photons by cells is thereby converted to internal biophysical/biochemical signals, resulting in the modification of ciliary beating and hence the pattern of motile behavior. Blepharisma and Stentorhave been found quite suitable for the study of cellular photoreception employing different biophysical or biochemical experimental methods as well as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Fabczak H (2000) Protozoa as model system for studies of sensory light transduction: photophobic response in the ciliate Stentor and Blepharisma. Acta Protozool 39:171–181

    CAS  Google Scholar 

  • Fabczak H, Sobierajska K, Fabczak S (2008) A rhodopsin immunoanalog in the related photosensitive Blepharisma japonicum and Stentor coeruleus. Photochem Photobiol Sci 7:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Ishida M, Shigenaka Y, Taneda K (1989) Studies on the mechanism of cell elongation in Blepharisma japonicum. I. Physiological mechanism how light stimulation evokes cell eleongation. Eur J Protistol 25:182–186

    Article  CAS  PubMed  Google Scholar 

  • Krispel CM, Sokolov M, Chen YM, Song H, Herrmann R, Arshavsky VY, Burns ME (2007) Phosducin regulates the expression of transducin βγ-subunits in rod photoreceptors and does not contribute to phototransduction adaptation. J Gen Physiol 130:303–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marino MJ, Sherman TG, Wood DC (2001) Partial cloning of putative G-proteins modulating mechanotransduction in the ciliate Stentor. J Eukaryot Microbiol 48:527–536

    Article  CAS  PubMed  Google Scholar 

  • Nakaoka Y, Tokioka R, Shinozawa T, Usukura J (1991) Photoreception of Paramecium cilia: localization of photosensitivity and binding with anti-frog-rhodopsin IgG. J Cell Sci 99:67–72

    CAS  PubMed  Google Scholar 

  • Podesta A, Marangoni R, Villani C, Colombetti G (2007) A rhodopsin-like molecule on the plasma membrane of Fabrea salina. J Eukaryot Microbiol 41:565–569

    Article  Google Scholar 

  • Schulz R (2001) The pharmacology of phosducin. Pharmacol Res 43:1–10

    Google Scholar 

  • Sobierajska K, Fabczak H, Fabczak S (2006) Photosensory transduction in unicellular eukaryotes: a comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms. J Photochem Photobiol B 83:163–171

    Article  CAS  PubMed  Google Scholar 

  • Sobierajska K, GÅ‚os J, Daborowska J, Kucharska J, Bregier C, Fabczak S, Fabczak H (2010) Visualization of the interaction between Gβγ and tubulin during light-induced cell elongation of Blepharisma japonicum. Photochem Photobiol Sci 9:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Sobierajska K, Joachimiak E, Bregier C, Fabczak S, Fabczak H (2011) Effect of phosducin silincing on the photokinetic motile response of Blepharisma japonicum. Photochem Photobiol Sci 9:19–24

    Article  Google Scholar 

  • Tao N, Deforce L, Romanowski M, Meza-Keuthen S, Song P-S, Furuja M (1994) Stentor and Blepharisma photoreceptors. Structure and function. Acta Protozool 33:199–211

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Fabczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Fabczak, H., Fabczak, S. (2015). Signal Recognition in Lower Organisms: Light-Induced Control of Cell Movement in the Ciliates Blepharisma and Stentor . In: Wells, R., Bond, J., Klinman, J., Masters, B., Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_734-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_734-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics