Skip to main content

Polyglutamine Folding Diseases

  • Living reference work entry
  • First Online:
Molecular Life Sciences
  • 412 Accesses

Synonyms

CAG repeat pathologies; PolyGln diseases; Polyglutamine diseases; PolyQ diseases

Synopsis

The presence of repeats of the trinucleotide sequence CAG results in pathogenic stretches of glutamine in the gene product. The polyglutamine (polyQ) stretches, in turn, tend to aggregate and to induce other susceptible proteins to aggregate. This protein aggregation results in pathological states in certain cell types. Each pathology is discussed, as well as potential mechanisms and possible treatment strategies.

Introduction

There are a number of disease states, including six spinocerebellar ataxias, which originate from protein misfolding due to an extended stretch of glutamine residues. These stretches of polyglutamine (polyQ) cause the misfolded protein to aggregate, leading to neural cytotoxicity.

PolyQ diseases originate with the presence of extended unstable stretches of the trinucleotide CAG in specific proteins, which places them within a broader group of “triplet repeat...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Auluck PK, Caraveo G, Lindquist S (2010) α-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol 26:211–233

    Article  CAS  PubMed  Google Scholar 

  • Batra R, Charizanis K, Swanson MS (2010) Partners in crime: bidirectional transcription in unstable microsatellite disease. Hum Mol Genet 19:R77–R82. doi:10.1093/hmg/ddq132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boudreau RL, Davidson BL (2010) RNAi therapeutics for CNS disorders. Brain Res 1338:112–121. doi:10.1016/j.brainres.2010.03.038

    Article  CAS  PubMed  Google Scholar 

  • Gidalevitz T, Ben-Zvi A, Ho KH et al (2006) Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471–1474. doi:10.1126/science.1124514

    Article  CAS  PubMed  Google Scholar 

  • Graham RK, Deng Y, Slow EJ et al (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125:1179–1191. doi:10.1016/j.cell.2006.04.026

    Article  CAS  PubMed  Google Scholar 

  • Katsuno M, Banno H, Suzuki K et al (2010) Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 9:875–884. doi:10.1016/S1474-4422(10)70182-4

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Lee S-T, Chu K, Kim SU (2008) Stem cell-based cell therapy for Huntington disease: a review. Neuropathology 28:1–9. doi:10.1111/j.1440-1789.2007.00858.x

    Article  CAS  PubMed  Google Scholar 

  • Nedelsky NB, Pennuto M, Smith RB, Palazzolo I, Moore J, Nie Z, Neale G, Taylor JP (2010) Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron 67:936–52. doi:10.1016/j.neuron.2010.08.034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orr HT (2012) Cell biology of spinocerebellar ataxia. J Cell Biol 197:167–177. doi:10.1083/jcb.201105092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paulson H (2009) The spinocerebellar ataxias. J Neuro-Ophthalmol 29:227–237. doi:10.1097/WNO0b013e3181b416de

    Article  Google Scholar 

  • Ross C, Shoulson I (2009) Huntington disease: pathogenesis, biomarkers, and approaches to experimental therapeutics. Parkinsonism Relat Disord 15(Suppl 3):S135–S138. doi:10.1016/S1353-8020(09)70800-4

    Article  PubMed  Google Scholar 

  • Stevanin G, Brice A (2008) Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum 17:170–178

    Article  Google Scholar 

  • Takahashi T, Kikuchi S, Katada S et al (2008) Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 17:345–356. doi:10.1093/hmg/ddm311

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Zhu Y, Chen-Plotkin AS et al (2011) PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats. PLoS One 6:e17951. doi:10.1371/journal.pone.0017951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981. doi:10.1152/physrev.00041.2009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shallee T. Page .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Page, S.T. (2014). Polyglutamine Folding Diseases. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_702-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_702-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics