Skip to main content

Replicative DNA Helicases and Primases

  • Living reference work entry
  • First Online:
Molecular Life Sciences
  • 370 Accesses

Synopsis

Replication of a cell’s genetic material is one of the most fundamental functions in biology. The genetic information defining each species is encoded within the sequence of the DNA double helix, and to be copied into a new genome, the sequence of the parental DNA must be revealed and made available to copying enzymes known as DNA polymerases. Watson and Crick, in their seminal 1953 paper on the “Molecular Structure of Nucleic Acids” (Watson and Crick 1953), pointed out that “the specific base pairing (Guanine to Cytosine and Adenine to Thymine) immediately suggests a possible copying mechanism for the genetic material.” They further postulated that “prior to duplication the hydrogen bonds break and the two chains unwind and separate” and asked “what makes the pair of chains unwind and separate?” The answer to this important question is DNA helicases.

Introduction

DNA helicases are molecular motors that convert chemical energy from NTP (nucleoside triphosphate) binding and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Monem M, Durwald H, Hoffmann-Berling H (1976) Enzymic unwinding of DNA: 2. Chain separation by an ATP-dependent DNA unwinding enzyme. Eur J Biochem 65:441–449

    Article  CAS  PubMed  Google Scholar 

  • Bae B, Chen YH, Costa A, Onesti S, Brunzelle JS, Lin Y, Cann IK, Nair SK (2009) Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog. Structure 17:211–222

    Article  CAS  PubMed  Google Scholar 

  • Bailey S, Eliason WK, Steitz TA (2007) Helicase and its complex with a domain of DnaG primase. Science 318:459–463

    Article  CAS  PubMed  Google Scholar 

  • Bird LE, Pan H, Soultanas P, Wigley DB (2000) Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearothermophilus. Biochemistry 39:171–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bochman ML, Schwacha A (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31:287–293

    Article  CAS  PubMed  Google Scholar 

  • Bochman ML, Schwacha A (2009) The Mcm complex: unwinding the mechanism of a replicative helicase. Micro Mol Biol Rev 73:652–683

    Article  CAS  Google Scholar 

  • Bowers JL, Randell JC, Chen S, Bell SP (2004) ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell 16:967–978

    Article  CAS  PubMed  Google Scholar 

  • Brewster AS, Wang G, Yu X, Greenleaf WB, Carazo JM, Tjajadia M, Klein MG, Chen XS (2008) Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA + hexameric helicase. Proc Natl Acad Sci U S A 105:20191–20196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B (2000) A double-hexamer archaeal minichromosome maintenance protein is an ATP- dependent DNA helicase. Proc Natl Acad Sci USA 97:1530–1535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corn JE, Pease PJ, Hura GL, Berger JM (2005) Crosstalk between primase subunits can act to regulate primer synthesis in trans. Mol Cell 20:391–401

    Article  CAS  PubMed  Google Scholar 

  • Corn JE, Pelton JG, Berger JM (2008) Identification of a DNA primase template tracking site redefines the geometry of primer synthesis. Nat Struct Mol Biol 15:163–169

    Article  CAS  PubMed  Google Scholar 

  • Duggin IG, McCallum SA, Bell SD (2008) Chromosome replication dynamics in the archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 105:16737–16742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 106:20240–20245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fletcher RJ, Bishop BE, Leon RP, Sclafani RA, Ogata CM, Chen XS (2003) The structure and function of MCM from archaeal M. Thermoautotrophicum. Nat Struct Biol 10:160–167

    Article  CAS  PubMed  Google Scholar 

  • Gai D, Zhao R, Li D, Finkielstein CV, Chen XS (2004) Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumour antigen. Cell 119:47–60

    Article  CAS  PubMed  Google Scholar 

  • Gambus A, Khoudoli GA, Jones RC, Blow JJ (2011) MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem 286:11855–11864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ilyina TV, Gorbalenya AE, Koonin EV (1992) Organization and evolution of bacterial and bacteriophage primase-helicase systems. J Mol Evol 34:351–357

    Article  CAS  PubMed  Google Scholar 

  • Kelman Z, Lee JK, Hurwitz J (1999) The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc Natl Acad Sci U S A 96:14783–14788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larson MA, Griep MA, Bressani R, Chintakayala K, Soultanas P, Hinrichs SH (2010) Class-specific restrictions define primase interactions with DNA template and replicative helicase. Nucleic Acids Res 38:7167–7178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leipe DD, Aravind L, Grishin NV, Koonin EV (2000) The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome Res 10:5–16

    CAS  PubMed  Google Scholar 

  • Liu W, Puccie B, Rossi M, Pisani FM, Ladenstein R (2008) Structural analysis of the Sulfolobus solfataricus MCM protein N-terminal domain. Nucleic Acids Res 36:3235–3243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lo YH, Tsai KL, Sun YJ, Chen WT, Huang CY, Hsiao CD (2009) The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Nucleic Acids Res 37:804–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maine GT, Surosky RT, Tye BK (1984) Isolation and characterization of the centromere from chromosome V (CEN5) of Saccharomyces cerevisiae. Mol Cell Biol 4:86–91

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGeoch AT, Trakselis MA, Laskey RA, Bell SD (2005) Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism. Nat Struct Mol Biol 12:756–762

    Article  CAS  PubMed  Google Scholar 

  • Nitharwal RG, Paul S, Dar A, Choudhury NR, Soni RK, Prusty D, Sinha S, Kashav T, Mukhopadhyay G, Chaudhuri TK, Gourinath S, Dhar SK (2007) The domain structure of Helicobacter pylori DnaB helicase; the N-terminal domain can be dispensable for helicase activity whereas the extreme C-terminal region is essential for its function. Nucleic Acids Res 35:2861–2874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pan H, Wigley DB (2000) Structure of the Zn-binding domain of Bacillus stearothermophilus DNA primase. Structure 8:231–239

    Article  CAS  PubMed  Google Scholar 

  • Qimron U, Lee SJ, Hamdan SM, Richardson CC (2006) Primer initiation and extension by T7 DNA primase. EMBO J 25:2199–2208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakakibara N, Kelman LM, Kelman Z (2009) Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol 72:286–296

    Article  CAS  PubMed  Google Scholar 

  • Samuels M, Gulati G, Shin JH, Opara R, McSweeney E, Sekedat M, Long S, Kelman Z, Jeruzalmi D (2009) A biochemically active MCM-like helicase in Bacillus cereus. Nucl Acids Res 37(13):4441–4452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strycharska MS, Arias-Palomo E, Lyubimov AY, Erzeberger JP, O’Shea VL, Bustamante CJ, Berger JM (2013) Nucleotide and partner-protein control of bacterial replicative helicase structure and function. Mol Cell 52:844–854

    Article  CAS  PubMed  Google Scholar 

  • Syson K, Thirlway J, Hounslow AM, Soultanas P, Waltho JP (2005) Solution structure of the helicase-interaction domain of the primase DnaG; a model for helicase activation. Structure 13:609–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos Soultanas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Soultanas, P., Bolt, E. (2014). Replicative DNA Helicases and Primases. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_57-6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_57-6

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics