Skip to main content

Transposons

  • Living reference work entry
  • First Online:
Molecular Life Sciences

Synopsis

Transposons are mobile genetic elements that can move between different DNA molecules or within an individual DNA molecule. The donor and target DNA molecules do not require any sequence homology for mobilization to occur. Transposons are often characterized by the biochemical strategy used to carry out DNA breaking and joining reactions. Recombinase families include the DDE-, HUH-, DEDD-type and serine transposases. Transposons may be removed from a donor DNA entirely by being “cut out,” or they may be left in place while a copy of the element is “copied out.” During insertion, the element may be either “pasted in,” moved entirely into the recipient molecule, or they may be “copied in.” Transposons that are copied out as RNA are referred to as retrotransposons, whereas transposons that move exclusively as a DNA molecule and do not require an RNA intermediate are simply referred to as DNA transposons. The assembly and coordination of all of the components involved in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Boocock MR, Rice PA (2013) A proposed mechanism for IS607-family serine transposases. Mob DNA 4:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchner JM, Robertson AE, Poynter DJ, Denniston SS, Karls AC (2005) Piv site-specific invertase requires a DEDD motif analogous to the catalytic center of the RuvC Holliday junction resolvases. J Bacteriol 187:3431–3437

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chalmers RM, Kleckner N (1996) IS10/Tn10 transposition efficiently accommodates diverse transposon end configurations. EMBO J 15:5112–5122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chandler M, de la Cruz F, Dyda F, Hickman AB, Moncalian G, Ton-Hoang B (2013) Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat Rev Microbiol 11:525–538

    Article  PubMed  CAS  Google Scholar 

  • Craig NL (2002) Mobile DNA II. ASM Press, Washington, DC

    Google Scholar 

  • Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4:865–877

    Article  PubMed  CAS  Google Scholar 

  • Darmon E, Leach DR (2014) Bacterial genome instability. Microbiol Mol Biol Rev 78:1–39

    Article  PubMed  Google Scholar 

  • Dyda F, Chandler M, Hickman AB (2012) The emerging diversity of transpososome architectures. Q Rev Biophys 45:493–521

    Article  PubMed  CAS  Google Scholar 

  • Gueguen E, Rousseau P, Duval-Valentin G, Chandler M (2005) The transpososome: control of transposition at the level of catalysis. Trends Microbiol 13:543–549

    Article  PubMed  CAS  Google Scholar 

  • Lazarow K, Doll ML, Kunze R (2013) Molecular biology of maize Ac/Ds elements: an overview. Methods Mol Biol 1057:59–82

    Article  PubMed  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36:344–355

    Google Scholar 

  • Nagy Z, Chandler M (2004) Regulation of transposition in bacteria. Res Microbiol 155:387–398

    Article  PubMed  CAS  Google Scholar 

  • Prosseda G, Latella MC, Casalino M, Nicoletti M, Michienzi S, Colonna B (2006) Plasticity of the P junc promoter of ISEc11, a new insertion sequence of the IS1111 family. J Bacteriol 188:4681–4689

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reznikoff WS (1993) The Tn5 transposon. Annu Rev Microbiol 47:945–963

    Article  PubMed  CAS  Google Scholar 

  • Siguier P, Gourbeyre E, Chandler M (2014) Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev doi: 10.1111/1574-6976.12067. [Epub ahead of print] 1–28

    Google Scholar 

  • Tropp BE (2012) Molecular biology: genes to proteins, 4th edn. Jones & Bartlett Learning, Sudbury

    Google Scholar 

  • Turlan C, Chandler M (2000) Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA. Trends Microbiol 8:268–274

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Parks, A.R., Peters, J.E. (2014). Transposons. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_154-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_154-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics