Skip to main content

Control of Initiation in E. coli

  • Living reference work entry
  • First Online:
Molecular Life Sciences
  • 495 Accesses

Synopsis

Studies have revealed several independent molecular mechanisms that regulate the frequency of replication initiation in E. coli (Skarstad and Katayama 2013; Nielsen and Lobner-Olesen 2008). By comparison with the biochemistry of DNA replication in eukaryotic cells, evidence suggests that all domains of life utilize comparable strategies to regulate the frequency of initiation. In E. coli, one pathway relies on the sequestration of the replication origin to occlude DnaA and other proteins from assembling at this site at an inappropriate time in the cell cycle. Sequestration occurs during the time interval that immediately follows initiation. Other biochemical pathways act by either modulating the availability of DnaA or its activity.

Introduction

DNA replication and the cell cycle.DNA replication in free-living organisms occurs only once and at a specific time in the cell cycle. This process can be formally divided into the stages of initiation of DNA replication, elongation...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Atlung T, Clausen ES, Hansen FG (1985) Autoregulation of the dnaA gene of Escherichia coli K12. Mol Gen Genet 200(3):442–450

    PubMed  CAS  Google Scholar 

  • Atlung T, Lobner-Olesen A, Hansen FG (1987) Overproduction of DnaA protein stimulates initiation of chromosome and minichromosome replication in Escherichia coli. Mol Gen Genet 206(1):51–59

    PubMed  CAS  Google Scholar 

  • Augustin LB, Jacobson BA, Fuchs JA (1994) Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion. J Bacteriol 176(2):378–387

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boeneman K, Crooke E (2005) Chromosomal replication and the cell membrane. Curr Opin Microbiol 8(2):143–148

    PubMed  CAS  Google Scholar 

  • Bogan JA, Helmstetter CE (1997) DNA sequestration and transcription in the oriC region of Escherichia coli. Mol Microbiol 26(5):889–896

    PubMed  CAS  Google Scholar 

  • Boye E et al (1996) Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins. Proc Natl Acad Sci U S A 93(22):12206–12211

    PubMed  CAS  PubMed Central  Google Scholar 

  • Braun RE, O’Day K, Wright A (1985) Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell 40(1):159–169

    PubMed  CAS  Google Scholar 

  • Brendler T, Austin S (1999) Binding of SeqA protein to DNA requires interaction between two or more complexes bound to separate hemimethylated GATC sequences. EMBO J 18(8):2304–2310

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brendler T, Abeles A, Austin S (1995) A protein that binds to the P1 origin core and the oriC 13mer region in a methylation-specific fashion is the product of the host seqA gene. EMBO J 14(16):4083–4089

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brendler T et al (2000) A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation. EMBO J 19(22):6249–6258

    PubMed  CAS  PubMed Central  Google Scholar 

  • Camara JE et al (2005) Hda inactivation of DnaA is the predominant mechanism preventing hyperinitiation of Escherichia coli DNA replication. EMBO Rep 6(8):736–741

    PubMed  CAS  PubMed Central  Google Scholar 

  • Campbell JL, Kleckner N (1988) The rate of Dam-mediated DNA adenine methylation in Escherichia coli. Gene 74(1):189–190

    PubMed  CAS  Google Scholar 

  • Campbell JL, Kleckner N (1990) E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 62(5):967–979

    PubMed  CAS  Google Scholar 

  • Charbon G et al (2011) Suppressors of DnaA(ATP) imposed overinitiation in Escherichia coli. Mol Microbiol 79(4):914–928

    PubMed  CAS  Google Scholar 

  • Clarey MG et al (2006) Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex. Nat Struct Mol Biol 13(8):684–690

    PubMed  CAS  Google Scholar 

  • Cooper S, Helmstetter CE (1968) Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31(3):519–540

    PubMed  CAS  Google Scholar 

  • Courcelle J (2005) Recs preventing wrecks. Mutat Res 577(1–2):217–227

    PubMed  CAS  Google Scholar 

  • Cox MM (2007) Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42(1):41–63

    PubMed  CAS  Google Scholar 

  • Dalrymple BP et al (2001) A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci U S A 98(20):11627–11632

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davey MJ et al (2002) Motors and switches: AAA + machines within the replisome. Nat Rev Mol Cell Biol 3(11):826–835

    PubMed  CAS  Google Scholar 

  • Donachie WD (1968) Relationship between cell size and time of initiation of DNA replication. Nature 219(158):1077–1079

    PubMed  CAS  Google Scholar 

  • Eriksson S, Sjoberg BM, Hahne S (1977) Ribonucleoside diphosphate reductase from Escherichia coli. An immunological assay and a novel purification from an overproducing strain lysogenic for phage lambdadnrd. J Biol Chem 252(17):6132–6138

    PubMed  CAS  Google Scholar 

  • Erzberger JP, Pirruccello MM, Berger JM (2002) The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J 21(18):4763–4773

    PubMed  CAS  PubMed Central  Google Scholar 

  • Erzberger JP, Mott ML, Berger JM (2006) Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nat Struct Mol Biol 13(8):676–683

    PubMed  CAS  Google Scholar 

  • Felczak MM, Kaguni JM (2004) The box VII motif of Escherichia coli DnaA protein is required for DnaA oligomerization at the E. coli replication origin. J Biol Chem 279(49):51156–51162

    PubMed  CAS  Google Scholar 

  • Felczak MM, Kaguni JM (2009) DnaAcos hyperinitiates by circumventing regulatory pathways that control the frequency of initiation in Escherichia coli. Mol Microbiol 72:1348–1363

    PubMed  CAS  PubMed Central  Google Scholar 

  • Finkel SE, Johnson RC (1992) The Fis protein: it’s not just for DNA inversion anymore. Mol Microbiol 6 (22):3257–3265. [Published erratum appears in Mol Microbiol 1993;7(2):1023]

    Google Scholar 

  • Froelich JM, Phuong TK, Zyskind JW (1996) Fis binding in the dnaA operon promoter region. J Bacteriol 178(20):6006–6012

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fujimitsu K, Katayama T (2004) Reactivation of DnaA by DNA sequence-specific nucleotide exchange in vitro. Biochem Biophys Res Commun 322(2):411–419

    PubMed  CAS  Google Scholar 

  • Fujimitsu K et al (2008) Modes of overinitiation, dnaA gene expression, and inhibition of cell division in a novel cold-sensitive hda mutant of Escherichia coli. J Bacteriol 190(15):5368–5381

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fujimitsu K, Senriuchi T, Katayama T (2009) Specific genomic sequences of E. coli promote replicational initiation by directly reactivating ADP-DnaA. Genes Dev 23(10):1221–1233

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gon S et al (2006) A novel regulatory mechanism couples deoxyribonucleotide synthesis and DNA replication in Escherichia coli. EMBO J 25(5):1137–1147

    PubMed  CAS  PubMed Central  Google Scholar 

  • Han JS et al (2003) Sequential binding of SeqA to paired hemi-methylated GATC sequences mediates formation of higher order complexes. J Biol Chem 278(37):34983–34989

    PubMed  CAS  Google Scholar 

  • Han JS et al (2004) Binding of SeqA protein to hemi-methylated GATC sequences enhances their interaction and aggregation properties. J Biol Chem 279(29):30236–30243

    PubMed  CAS  Google Scholar 

  • Handa N et al (2009) Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev 23(10):1234–1245

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hansen FG et al (1987) Titration of DnaA protein by oriC DnaA-boxes increases dnaA gene expression in Escherichia coli. EMBO J 6(1):255–258

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hansen FG et al (1991) Initiator (DnaA) protein concentration as a function of growth rate in Escherichia coli and Salmonella typhimurium. J Bacteriol 173(16):5194–5199

    PubMed  CAS  PubMed Central  Google Scholar 

  • Herrick J, Sclavi B (2007) Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol 63(1):22–34

    PubMed  CAS  Google Scholar 

  • Herrick J et al (1996) The initiation mess? Mol Microbiol 19(4):659–666

    PubMed  CAS  Google Scholar 

  • Hill NS et al (2012) Cell size and the initiation of DNA replication in bacteria. PLoS Genet 8(3):e1002549

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hiom K (2009) DNA repair: common approaches to fixing double-strand breaks. Curr Biol 19(13):R523–R525

    PubMed  CAS  Google Scholar 

  • Hiraga S et al (1998) Cell cycle-dependent duplication and bidirectional migration of seqA- associated DNA-protein complexes in E. coli [In Process Citation]. Mol Cell 1(3):381–387

    PubMed  CAS  Google Scholar 

  • Hwang DS, Kornberg A (1990) A novel protein binds a key origin sequence to block replication of an E. coli minichromosome. Cell 63(2):325–331

    PubMed  CAS  Google Scholar 

  • Hwang DS, Kornberg A (1992) Opposed actions of regulatory proteins, DnaA and IciA, in opening the replication origin of Escherichia coli. J Biol Chem 267(32):23087–23091

    PubMed  CAS  Google Scholar 

  • Jeruzalmi D et al (2001) Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106(4):417–428

    PubMed  CAS  Google Scholar 

  • Kang S et al (2005) Dimeric configuration of SeqA protein bound to a pair of hemi-methylated GATC sequences. Nucleic Acids Res 33(5):1524–1531

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kasho K, Katayama T (2013) DnaA binding locus datA promotes DnaA-ATP hydrolysis to enable cell cycle-coordinated replication initiation. Proc Natl Acad Sci U S A 110(3):936–941

    PubMed  CAS  PubMed Central  Google Scholar 

  • Katayama T et al (1998) The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94(1):61–71

    PubMed  CAS  Google Scholar 

  • Katayama T et al (2010) Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol 8(3):163–170

    PubMed  CAS  Google Scholar 

  • Kato J, Katayama T (2001) Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli. EMBO J 20(15):4253–4262

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kawakami H, Katayama T (2010) DnaA, ORC, and Cdc6: similarity beyond the domains of life and diversity. Biochem Cell Biol 88(1):49–62

    PubMed  CAS  Google Scholar 

  • Kawakami H, Keyamura K, Katayama T (2005) Formation of an ATP-DnaA-specific initiation complex requires DnaA arginine 285, a conserved motif in the AAA + protein family. J Biol Chem 280(29):27420–27430

    PubMed  CAS  Google Scholar 

  • Kawakami H, Su’etsugu M, Katayama T (2006) An isolated Hda-clamp complex is functional in the regulatory inactivation of DnaA and DNA replication. J Struct Biol 156(1):220–229

    PubMed  CAS  Google Scholar 

  • Kitagawa R et al (1998) Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein. Genes Dev 12(19):3032–3043

    PubMed  CAS  PubMed Central  Google Scholar 

  • Konieczny I (2003) Strategies for helicase recruitment and loading in bacteria. EMBO Rep 4(1):37–41

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koonin EV (1993) A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res 21(11):2541–2547

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kucherer C et al (1986) Regulation of transcription of the chromosomal dnaA gene of Escherichia coli. Mol Gen Genet 205(1):115–121

    PubMed  CAS  Google Scholar 

  • Kurokawa K et al (1999) Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli. EMBO J 18(23):6642–6652

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kurz M et al (2004) Interaction of the sliding clamp beta-subunit and Hda, a DnaA-related protein. J Bacteriol 186(11):3508–3515

    PubMed  CAS  PubMed Central  Google Scholar 

  • Langston LD, Indiani C, O’Donnell M (2009) Whither the replisome: emerging perspectives on the dynamic nature of the DNA replication machinery. Cell Cycle 8(17):2686–2691

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee Y et al (1997) The binding of two dimers of IciA protein to the dnaA promoter 1P element enhances the binding of RNA polymerase to the dnaA promoter 1P. Nucleic Acids Res 25(17):3486–3489

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lobner-Olesen A et al (1989) The DnaA protein determines the initiation mass of Escherichia coli K- 12. Cell 57(5):881–889

    PubMed  CAS  Google Scholar 

  • Lopez de Saro FJ, O’Donnell M (2001) Interaction of the beta sliding clamp with MutS, ligase, and DNA polymerase I. Proc Natl Acad Sci U S A 98(15):8376–8380

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez de Saro FJ et al (2006) The beta sliding clamp binds to multiple sites within MutL and MutS. J Biol Chem 281(20):14340–14349

    PubMed  Google Scholar 

  • Lu M et al (1994) SeqA: a negative modulator of replication initiation in E. coli. Cell 77(3):413–426

    PubMed  CAS  Google Scholar 

  • Ma D, Campbell JL (1988) The effect of dnaA protein and n’ sites on the replication of plasmid ColE1. J Biol Chem 263(29):15008–15015

    PubMed  CAS  Google Scholar 

  • Maki S, Kornberg A (1988) DNA polymerase III holoenzyme of Escherichia coli. III. Distinctive processive polymerases reconstituted from purified subunits. J Biol Chem 263(14):6561–6569

    PubMed  CAS  Google Scholar 

  • McHenry CS (2011) Bacterial replicases and related polymerases. Curr Opin Chem Biol 15(5):587–594

    PubMed  CAS  PubMed Central  Google Scholar 

  • Messer W, Weigel C (2003) DnaA as a transcription regulator. Methods Enzymol 370:338–349

    PubMed  CAS  Google Scholar 

  • Morigen et al (2001) Regulation of chromosomal replication by DnaA protein availability in Escherichia coli: effects of the datA region. Biochim Biophys Acta 1521(1–3):73–80

    PubMed  CAS  Google Scholar 

  • Mott ML, Berger JM (2007) DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol 5(5):343–354

    PubMed  CAS  Google Scholar 

  • Nakamura K, Katayama T (2010) Novel essential residues of Hda for interaction with DnaA in the regulatory inactivation of DnaA: unique roles for Hda AAA Box VI and VII motifs. Mol Microbiol 76(2):302–317

    PubMed  CAS  Google Scholar 

  • Neuwald AF et al (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9(1):27–43

    PubMed  CAS  Google Scholar 

  • Nielsen O, Lobner-Olesen A (2008) Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells. EMBO Rep 9(2):151–156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nievera C et al (2006) SeqA blocking of DnaA-oriC interactions ensures staged assembly of the E. coli pre-RC. Mol Cell 24(4):581–592

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ogden GB, Pratt MJ, Schaechter M (1988) The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated. Cell 54(1):127–135

    PubMed  CAS  Google Scholar 

  • Ogura T, Whiteheart SW, Wilkinson AJ (2004) Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA + ATPases. J Struct Biol 146(1–2):106–112

    PubMed  CAS  Google Scholar 

  • Olliver A et al (2010) DnaA-ATP acts as a molecular switch to control levels of ribonucleotide reductase expression in Escherichia coli. Mol Microbiol 76(6):1555–1571

    PubMed  CAS  Google Scholar 

  • Onogi T et al (1999) The assembly and migration of SeqA-Gfp fusion in living cells of Escherichia coli. Mol Microbiol 31(6):1775–1782

    PubMed  CAS  Google Scholar 

  • Parada CA, Marians KJ (1991) Mechanism of DNA A protein-dependent pBR322 DNA replication. DNA A protein-mediated trans-strand loading of the DNA B protein at the origin of pBR322 DNA. J Biol Chem 266(28):18895–18906

    PubMed  CAS  Google Scholar 

  • Riber L et al (2006) Hda-mediated inactivation of the DnaA protein and dnaA gene autoregulation act in concert to ensure homeostatic maintenance of the Escherichia coli chromosome. Genes Dev 20(15):2121–2134

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roth A, Messer W (1998) High-affinity binding sites for the initiator protein DnaA on the chromosome of Escherichia coli. Mol Microbiol 28(2):395–401

    PubMed  CAS  Google Scholar 

  • Sekimizu K, Kornberg A (1988) Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J Biol Chem 263(15):7131–7135

    PubMed  CAS  Google Scholar 

  • Sekimizu K, Bramhill D, Kornberg A (1987) ATP activates dnaA protein in initiating replication of plasmids bearing the origin of the E. coli chromosome. Cell 50(2):259–265

    PubMed  CAS  Google Scholar 

  • Seufert W, Messer W (1987) DnaA protein binding to the plasmid origin region can substitute for primosome assembly during replication of pBR322 in vitro. Cell 48(1):73–78

    PubMed  CAS  Google Scholar 

  • Skarstad K, Katayama T (2013) Regulating DNA replication in bacteria. Cold Spring Harb Perspect Biol 5(4)

    Google Scholar 

  • Skarstad K, Boye E, Steen HB (1986) Timing of initiation of chromosome replication in individual Escherichia coli cells. Embo J 5 (7):1711–1717. [Published erratum appears in EMBO J 1986 Nov;5(11):3074]

    Google Scholar 

  • Slater S et al (1995) E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 82(6):927–936

    PubMed  CAS  Google Scholar 

  • Smith RW, McAteer S, Masters M (1997) Autoregulation of the Escherichia coli replication initiator protein, DnaA, is indirect. Mol Microbiol 23(6):1303–1315

    PubMed  CAS  Google Scholar 

  • Speck C, Weigel C, Messer W (1999) ATP- and ADP-dnaA protein, a molecular switch in gene regulation. EMBO J 18(21):6169–6176

    PubMed  CAS  PubMed Central  Google Scholar 

  • Su’etsugu M et al (2004) Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex. Genes Cells 9(6):509–522

    PubMed  Google Scholar 

  • Su’etsugu M et al (2005) Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex. J Biol Chem 280(8):6528–6536

    PubMed  Google Scholar 

  • Su’etsugu M et al (2008) Hda monomerization by ADP binding promotes replicase clamp-mediated DnaA-ATP hydrolysis. J Biol Chem 283(52):36118–36131

    PubMed  PubMed Central  Google Scholar 

  • Sun L, Fuchs JA (1992) Escherichia coli ribonucleotide reductase expression is cell cycle regulated. Mol Biol Cell 3(10):1095–1105

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun L et al (1994) Cell cycle regulation of the Escherichia coli nrd operon: requirement for a cis-acting upstream AT-rich sequence. J Bacteriol 176(8):2415–2426

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sutton MD, Opperman T, Walker GC (1999) The Escherichia coli SOS mutagenesis proteins UmuD and UmuD’ interact physically with the replicative DNA polymerase. Proc Natl Acad Sci U S A 96(22):12373–12378

    PubMed  CAS  PubMed Central  Google Scholar 

  • Theisen PW et al (1993) Correlation of gene transcription with the time of initiation of chromosome replication in Escherichia coli. Mol Microbiol 10(3):575–584

    PubMed  CAS  Google Scholar 

  • Travers A, Schneider R, Muskhelishvili G (2001) DNA supercoiling and transcription in Escherichia coli: The FIS connection. Biochimie 83(2):213–217

    PubMed  CAS  Google Scholar 

  • van den Berg EA et al (1985) Analysis of regulatory sequences upstream of the E. coli uvrB gene; involvement of the DnaA protein. Nucleic Acids Res 13(6):1829–1840

    PubMed  PubMed Central  Google Scholar 

  • von Freiesleben U, Rasmussen KV, Schaechter M (1994) SeqA limits DnaA activity in replication from oriC in Escherichia coli. Mol Microbiol 14(4):763–772

    CAS  Google Scholar 

  • Waldminghaus T, Weigel C, Skarstad K (2012) Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome. Nucleic Acids Res 40:5465–5476

    Google Scholar 

  • Wang QP, Kaguni JM (1987) Transcriptional repression of the dnaA gene of Escherichia coli by dnaA protein. Mol Gen Genet 209(3):518–525

    PubMed  CAS  Google Scholar 

  • Wang QP, Kaguni JM (1989) dnaA protein regulates transcriptions of the rpoH gene of Escherichia coli. J Biol Chem 264(13):7338–7344

    PubMed  CAS  Google Scholar 

  • Xu Q et al (2009) A structural basis for the regulatory inactivation of DnaA. J Mol Biol 385(2):368–380

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamazoe M et al (2005) Sequential binding of SeqA protein to nascent DNA segments at replication forks in synchronized cultures of Escherichia coli. Mol Microbiol 55(1):289–298

    PubMed  CAS  Google Scholar 

  • Zheng W et al (2001) Mutations in DnaA protein suppress the growth arrest of acidic phospholipid-deficient Escherichia coli cells. EMBO J 20(5):1164–1172

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou Z, Syvanen M (1990) Identification and sequence of the drpA gene from Escherichia coli. J Bacteriol 172(1):281–286

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank the members of my lab for their support while I was writing. This work is supported by Grant GM090063 from the National Institutes of Health and by the Michigan Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon M Kaguni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kaguni, J.M. (2014). Control of Initiation in E. coli . In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_144-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_144-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics