Skip to main content

Division of Labor

  • Living reference work entry
  • First Online:
Molecular Life Sciences

Synopsis

The first assignment of DNA polymerases at the eukaryotic replication fork was possible after the in vitro reconstitution of the simian virus 40 (SV40) replication system. In this system, DNA polymerase α (Pol α) provides both leading and lagging strands with RNA-DNA primers that are extended by DNA polymerase δ (Pol δ). Extrapolating the architecture of the replication fork from the SV40 model system to an actual eukaryotic cell has been challenged by the discovery of a third DNA polymerase in Saccharomyces cerevisiae, DNA polymerase ε (Pol ε). A division of labor has been proposed for the eukaryotic replication fork whereby Pol ε replicates the leading strand and Pol δ replicates the lagging strand. However, an alternative model of unequal division of labor in which Pol δ can still participate in leading-strand synthesis is plausible.

Introduction

Eukaryotic chromosomes have multiple origins of replication (ori) that are spaced apart by ~30–100 kilo bases (kb). Initiation...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acharya N, Johnson RE, Pages V, Prakash L, Prakash S (2009) Yeast Rev1 protein promotes complex formation of DNA polymerase zeta with Pol32 subunit of DNA polymerase delta. Proc Natl Acad Sci U S A 106(24):9631–9636

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Daube SS, Tomer G, Livneh Z (2000) Translesion replication by DNA polymerase delta depends on processivity accessory proteins and differs in specificity from DNA polymerase beta. Biochemistry 39(2):348–355

    Article  PubMed  CAS  Google Scholar 

  • Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 274(32):22283–22288

    Article  PubMed  CAS  Google Scholar 

  • Feng W, D’Urso G (2001) Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol Cell Biol 21(14):4495–4504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Garg P, Stith CM, Sabouri N, Johansson E, Burgers PM (2004) Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev 18(22):2764–2773

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karthikeyan R, Vonarx EJ, Straffon AF, Simon M, Faye G, Kunz BA (2000) Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. J Mol Biol 299(2):405–419

    Article  PubMed  CAS  Google Scholar 

  • Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3(5):679–685

    Article  PubMed  CAS  Google Scholar 

  • Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18(11):521–527

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Larrea AA, Lujan SA, Nick McElhinny SA, Mieczkowski PA, Resnick MA, Gordenin DA, Kunkel TA (2010) Genome-wide model for the normal eukaryotic DNA replication fork. Proc Natl Acad Sci U S A 107(41):17674–17679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Minnick DT, Bebenek K, Osheroff WP, Turner RM Jr, Astatke M, Liu L, Kunkel TA, Joyce CM (1999) Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment). J Biol Chem 274(5):3067–3075

    Article  PubMed  CAS  Google Scholar 

  • Miyabe I, Kunkel TA, Carr AM (2011) The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet 7(12):e1002407

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morrison A, Sugino A (1994) The 3′→5′ exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol Gen Genet 242(3):289–296

    Article  PubMed  CAS  Google Scholar 

  • Morrison A, Araki H, Clark AB, Hamatake RK, Sugino A (1990) A third essential DNA polymerase in S. cerevisiae. Cell 62(6):1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Morrison A, Johnson AL, Johnston LH, Sugino A (1993) Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J 12(4):1467–1473

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30(2):137–144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pavlov YI, Shcherbakova PV (2010) DNA polymerases at the eukaryotic fork-20 years later. Mutat Res 685(1–2):45–53

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pavlov YI, Shcherbakova PV, Kunkel TA (2001) In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta. Genetics 159(1):47–64

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pavlov YI, Frahm C, Nick McElhinny SA, Niimi A, Suzuki M, Kunkel TA (2006) Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 16(2):202–207

    Article  PubMed  CAS  Google Scholar 

  • Prakash S, Johnson RE, Prakash L (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317–353

    Article  PubMed  CAS  Google Scholar 

  • Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317(5834):127–130

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shcherbakova PV, Pavlov YI (1996) 3′→5′ exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics 142(3):717–726

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir M. Hamdan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Oke, M., Zaher, M.S., Hamdan, S.M. (2014). Division of Labor. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_134-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_134-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics