Molecular Life Sciences

Living Edition
| Editors: Robert D. Wells, Judith S. Bond, Judith Klinman, Bettie Sue Siler Masters, Ellis Bell

Innate Immunity

  • Deborah B. Foreman
  • Suzanne Bohlson
Living reference work entry


The innate immune response is often described as the first line of host defense against infection. While the adaptive immune response relies on the recombination of genomic DNA to develop antigen receptors with specificity for an unlimited number of potential antigens, recognition events in the innate immune system rely on germline-encoded receptors that recognize a much more limited set of structures. Among these pattern recognition proteins are membrane-associated molecules, as well as soluble molecules such as the complement proteins, C1q and MBL. Pattern recognition receptors (PRRs) are germline-encoded receptors expressed on a variety of host cells that recognize conserved pathogen-associated molecular patterns (PAMPs), as well as hallmarks of cellular stress on host cells known as danger-associated molecular patterns (DAMPs). Stimulation of PRRs by cognate ligand not only leads to the appropriate innate immune response but also directs the adaptive immune response. PRRs...


Innate Immune Response Mannose Binding Lectin Cognate Ligand Normal Tissue Homeostasis Host Antimicrobial Defense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Ablasser A, Bauernfeind F, Hartmann G et al (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10:1065–1072CrossRefPubMedGoogle Scholar
  2. Adachi O, Kawai T, Takeda K et al (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9:143–150CrossRefPubMedGoogle Scholar
  3. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801CrossRefPubMedGoogle Scholar
  4. Arora M, Munoz E, Tenner AJ (2001) Identification of a site on mannan-binding lectin critical for enhancement of phagocytosis. J Biol Chem 276:43087–43094CrossRefPubMedGoogle Scholar
  5. Bernasconi NL, Traggiai E, Lanzavecchia A (2002) Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298:2199–2202CrossRefPubMedGoogle Scholar
  6. Blander JM, Medzhitov R (2006) On regulation of phagosome maturation and antigen presentation. Nat Immunol 7:1029–1035CrossRefPubMedGoogle Scholar
  7. Bobak DA, Gaither TA, Frank MM, Tenner AJ (1987) Modulation of FcR function by complement: subcomponent C1q enhances the phagocytosis of IgG-opsonized targets by human monocytes and culture-derived macrophages. J Immunol 138:1150–1156PubMedGoogle Scholar
  8. Bobak DA, Frank MM, Tenner AJ (1988a) C1q acts synergistically with phorbol dibutyrate to activate CR1-mediated phagocytosis by human mononuclear phagocytes. Eur J Immunol 18:2001–2007CrossRefPubMedGoogle Scholar
  9. Bobak DA, Washburn RG, Frank MM (1988b) C1q enhances the phagocytosis of Cryptococcus neoformans blastospores by human monocytes. J Immunol 141:592–597PubMedGoogle Scholar
  10. Bowie A, O’Neill L (2000) The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 67:508–514PubMedGoogle Scholar
  11. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244CrossRefPubMedGoogle Scholar
  12. Brown GD, Herre J, Williams DL et al (2003) Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197:1119–1124CrossRefPubMedCentralPubMedGoogle Scholar
  13. Bruscia EM, Zhang P-X, Satoh A et al (2011) Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis. J Immunol 186:6990–6998CrossRefPubMedCentralPubMedGoogle Scholar
  14. Bürckstümmer T, Baumann C, Blüml S et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10:266–272CrossRefPubMedGoogle Scholar
  15. Carpenter S, O’Neill LAJ (2007) How important are Toll-like receptors for antimicrobial responses? Cell Microbiol 9:1891–1901CrossRefPubMedGoogle Scholar
  16. Chamaillard M, Hashimoto M, Horie Y et al (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4:702–707CrossRefPubMedGoogle Scholar
  17. Cheng G, Zhong J, Chung J, Chisari FV (2007) Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc Natl Acad Sci U S A 104:9035–9040CrossRefPubMedCentralPubMedGoogle Scholar
  18. Chiu YH, MacMillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:576–591CrossRefPubMedCentralPubMedGoogle Scholar
  19. Choe J, Kelker MS, Wilson IA (2005) Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 309:581–585. doi:10.1126/science.1115253CrossRefPubMedGoogle Scholar
  20. Den DJ, Gringhuis SI, Geijtenbeek TB (2009) Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol Immunother 58:1149–1157CrossRefGoogle Scholar
  21. Deng L, Wang C, Spencer E et al (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361CrossRefPubMedGoogle Scholar
  22. Dennehy KM, Brown GD (2007) The role of the beta-glucan receptor Dectin-1 in control of fungal infection. J Leukoc Biol 82:253–258CrossRefPubMedGoogle Scholar
  23. Faustin B, Lartigue L, Bruey JM et al (2006) In vitro reconstitution of the NALP1 inflammasome reveals requirements for caspase activation. Blood 108:1045ACrossRefGoogle Scholar
  24. Fernandes-Alnemri T, Yu J-W, Datta P et al (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513CrossRefPubMedCentralPubMedGoogle Scholar
  25. Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78–83CrossRefPubMedGoogle Scholar
  26. Fitzgerald KA, McWhirter SM, Faia KL et al (2003a) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496CrossRefPubMedGoogle Scholar
  27. Fitzgerald KA, Rowe DC, Barnes BJ et al (2003b) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the Toll adapters TRAM and TRIF. J Exp Med 198:1043–1055CrossRefPubMedCentralPubMedGoogle Scholar
  28. Gantner BN, Simmons RM, Canavera SJ et al (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197:1107–1117CrossRefPubMedCentralPubMedGoogle Scholar
  29. Girardin SE, Boneca IG, Carneiro LA et al (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587CrossRefPubMedGoogle Scholar
  30. Goodridge HS, Simmons RM, Underhill DM (2007) Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol 178:3107–3115CrossRefPubMedGoogle Scholar
  31. Gordon S (2002) Pattern recognition receptors: doubling up for the innate immune response. Cell 111:927–930CrossRefPubMedGoogle Scholar
  32. Gross O, Gewies A, Finger K et al (2006) Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442:651–656CrossRefPubMedGoogle Scholar
  33. Hacker H, Redecke V, Blagoev B et al (2006) Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204–207CrossRefPubMedGoogle Scholar
  34. Heil F, Hemmi H, Hochrein H et al (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:1526–1529CrossRefPubMedGoogle Scholar
  35. Herlands RA, Christensen SR, Sweet RA et al (2008) T cell-independent and Toll-like receptor-dependent antigen-driven activation of autoreactive B cells. Immunity 29:249–260CrossRefPubMedCentralPubMedGoogle Scholar
  36. Hoebe K, Du X, Georgel P et al (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743–748CrossRefPubMedGoogle Scholar
  37. Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2:835–841CrossRefPubMedGoogle Scholar
  38. Horng T, Barton GM, Flavell RA, Medzhitov R (2002) The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420:329–333CrossRefPubMedGoogle Scholar
  39. Hornung V, Ablasser A, Charrel-Dennis M et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518CrossRefPubMedCentralPubMedGoogle Scholar
  40. Hsu YM, Zhang Y, You Y et al (2007) The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol 8:198–205CrossRefPubMedGoogle Scholar
  41. Hysi P, Kabesch M, Moffatt MF et al (2005) NOD1 variation, immunoglobulin E and asthma. Hum Mol Genet 14:935–941CrossRefPubMedGoogle Scholar
  42. Inohara N, Koseki T, Lin J et al (2000) An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem 275:27823–27831PubMedGoogle Scholar
  43. Ishii KJ, Kawagoe T, Koyama S et al (2008) TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451:725–729CrossRefPubMedGoogle Scholar
  44. Ishikawa E, Ishikawa T, Morita YS et al (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888CrossRefPubMedCentralPubMedGoogle Scholar
  45. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995CrossRefPubMedGoogle Scholar
  46. Jurk M, Heil F, Vollmer J et al (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3:499CrossRefPubMedGoogle Scholar
  47. Kanneganti TD, Ozoren N, Body-Malapel M et al (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–236CrossRefPubMedGoogle Scholar
  48. Kanneganti TD, Lamkanfi M, Kim YG et al (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–443CrossRefPubMedGoogle Scholar
  49. Kato H, Sato S, Yoneyama M et al (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19–28CrossRefPubMedGoogle Scholar
  50. Kato H, Takeuchi O, Mikamo-Satoh E et al (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601–1610CrossRefPubMedCentralPubMedGoogle Scholar
  51. Kawai T, Akira S (2007) Antiviral signaling through pattern recognition receptors. J Biochem 141:137–145CrossRefPubMedGoogle Scholar
  52. Kawai T, Takahashi K, Sato S et al (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988CrossRefPubMedGoogle Scholar
  53. Kobayashi K, Inohara N, Hernandez LD et al (2002) RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416:194–199CrossRefPubMedGoogle Scholar
  54. Kobayashi KS, Chamaillard M, Ogura Y et al (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–734CrossRefPubMedGoogle Scholar
  55. Komuro A, Horvath CM (2006) RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. J Virol 80:12332–12342CrossRefPubMedCentralPubMedGoogle Scholar
  56. Korb LC, Ahearn JM (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158:4525–4528PubMedGoogle Scholar
  57. Lamkanfi M, Amer A, Kanneganti TD et al (2007) The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178:8022–8027CrossRefPubMedGoogle Scholar
  58. Lauw FN, Caffrey DR, Golenbock DT (2005) Of mice and man: TLR11 (finally) finds profilin. Trends Immunol 26:509–511CrossRefPubMedGoogle Scholar
  59. Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci U S A 99:5567–5572CrossRefPubMedCentralPubMedGoogle Scholar
  60. Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7:31–40CrossRefPubMedGoogle Scholar
  61. Mariathasan S, Weiss DS, Newton K et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232CrossRefPubMedGoogle Scholar
  62. Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117:561–574CrossRefPubMedGoogle Scholar
  63. Martinon F, Petrilli V, Mayor A et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241CrossRefPubMedGoogle Scholar
  64. McDonald C, Inohara N, Nunez G (2005) Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 280:20177–20180CrossRefPubMedGoogle Scholar
  65. Meylan E, Burns K, Hofmann K et al (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5:503–507CrossRefPubMedGoogle Scholar
  66. Nagai Y, Kobayashi T, Motoi Y et al (2005) The radioprotective 105/MD-1 complex links TLR2 and TLR4/MD-2 in antibody response to microbial membranes. J Immunol 174:7043–7049CrossRefPubMedGoogle Scholar
  67. Nauta AJ, Daha MR, Van KC, Roos A (2003a) Recognition and clearance of apoptotic cells: a role for complement and pentraxins. Trends Immunol 24:148–154CrossRefPubMedGoogle Scholar
  68. Nauta AJ, Raaschou-Jensen N, Roos A et al (2003b) Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur J Immunol 33:2853–2863CrossRefPubMedGoogle Scholar
  69. Navratil JS, Watkins SC, Wisnieski JJ, Ahearn JM (2001) The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol 166:3231–3239CrossRefPubMedGoogle Scholar
  70. Ogden CA, DeCathelineau A, Hoffmann PR et al (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194:781–795CrossRefPubMedCentralPubMedGoogle Scholar
  71. Ogura Y, Bonen DK, Inohara N et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606CrossRefPubMedGoogle Scholar
  72. Oshiumi H, Matsumoto M, Funami K et al (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4:161–167CrossRefPubMedGoogle Scholar
  73. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4 + CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036CrossRefPubMedGoogle Scholar
  74. Pasare C, Medzhitov R (2004) Toll-dependent control mechanisms of CD4 T cell activation. Immunity 21:733–741CrossRefPubMedGoogle Scholar
  75. Pasare C, Medzhitov R (2005) Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol 560:11–18CrossRefPubMedGoogle Scholar
  76. Pichlmair A, Schulz O, Tan CP et al (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001CrossRefPubMedGoogle Scholar
  77. Pyz E, Marshall AS, Gordon S, Brown GD (2006) C-type lectin-like receptors on myeloid cells. Ann Med 38:242–251CrossRefPubMedGoogle Scholar
  78. Rogers NC, Slack EC, Edwards AD et al (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507–517CrossRefPubMedGoogle Scholar
  79. Ruprecht CR, Lanzavecchia A (2006) Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol 36:810–816CrossRefPubMedGoogle Scholar
  80. Sharma S, Tenoever BR, Grandvaux N et al (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148–1151CrossRefPubMedGoogle Scholar
  81. Sutterwala FS, Ogura Y, Szczepanik M et al (2006) Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–327CrossRefPubMedGoogle Scholar
  82. Takaoka A, Yanai H, Kondo S et al (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243–249CrossRefPubMedGoogle Scholar
  83. Ting JP-Y, Kastner DL, Hoffman HM (2006) CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 6:183–195CrossRefPubMedGoogle Scholar
  84. Underhill DM, Rossnagle E, Lowell CA, Simmons RM (2005) Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106:2543–2550CrossRefPubMedCentralPubMedGoogle Scholar
  85. Vandivier RW, Ogden CA, Fadok VA et al (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169:3978–3986CrossRefPubMedGoogle Scholar
  86. Vella AT, Dow S, Potter TA et al (1998) Cytokine-induced survival of activated T cells in vitro and in vivo. Proc Natl Acad Sci U S A 95:3810–3815CrossRefPubMedCentralPubMedGoogle Scholar
  87. Vinzing M, Eitel J, Lippmann J et al (2008) NAIP and Ipaf control Legionella pneumophila replication in human cells. J Immunol 180:6808–6815CrossRefPubMedGoogle Scholar
  88. Wang C, Deng L, Hong M et al (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351CrossRefPubMedGoogle Scholar
  89. West MA, Wallin RPA, Matthews SP et al (2004) Enhanced dendritic cell antigen capture via Toll-like receptor-induced actin remodeling. Science 305:1153–1157CrossRefPubMedGoogle Scholar
  90. Yamamoto M, Sato S, Hemmi H et al (2002a) Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420:324–329CrossRefPubMedGoogle Scholar
  91. Yamamoto M, Sato S, Mori K et al (2002b) Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169:6668–6672CrossRefPubMedGoogle Scholar
  92. Yamamoto M, Sato S, Hemmi H et al (2003) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4:1144–1150CrossRefPubMedGoogle Scholar
  93. Yamasaki S, Matsumoto M, Takeuchi O et al (2009) C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci U S A 106:1897–1902CrossRefPubMedCentralPubMedGoogle Scholar
  94. Yoneyama M, Fujita T (2007) Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem 282:15315–15318CrossRefPubMedGoogle Scholar
  95. Yoneyama M, Kikuchi M, Matsumoto K et al (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858CrossRefPubMedGoogle Scholar
  96. Zamboni DS, Kobayashi KS, Kohlsdorf T et al (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325CrossRefPubMedGoogle Scholar
  97. Zhang D, Zhang G, Hayden MS et al (2004) A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Deborah B. Foreman
    • 1
  • Suzanne Bohlson
    • 2
  1. 1.WarsawUSA
  2. 2.Department of Microbiology and ImmunologyDes Moines UniversityDes MoinesUSA