Skip to main content

Dynamics in Neural Systems

A Dynamical Systems Viewpoint

Abstract

This chapter provides a dynamical systems viewpoint for various dynamics in neuronal systems, based on the assumption that there exist dynamical systems underlying neural dynamic behaviors. We treat the topological dynamical systems, where qualitative analyses such as phase plane analysis and bifurcation analysis are explained. These analyses can “qualitatively” solve the dynamical equations expressed by differential equations, thereby determining the geometry of trajectories, even if the analytical methods to solve the dynamical equations exactly are unknown. We explain how it is possible to reconstruct the dynamical trajectories from the observed data, by assuming that dynamical systems underlie the observed data. We explain the methods relating to the measurement processes. We also treat various attractors in dynamical systems and their potential functions in neural information processing. Furthermore, we describe dynamical modeling of neural dynamics from a single-neuron level to large-scale levels. We also introduce a globally coupled map as a generalized model, which efficiently describes the complex dynamics caused by heterogeneous interactions. Finally, we briefly review evolutionary dynamical models for nonstationary neural dynamics, which are typically observed in the brain’s developmental process.

Keywords

  • Attractors
  • Basin of attraction
  • Bifurcation analysis
  • Blood oxygenation level–dependent (BOLD) signals
  • Chaos
  • Chaotic itinerancy
  • Dynamical systems
  • Embedding theorem
  • Evolutionary model
  • Family of dynamical systems
  • Formal neurons
  • Fractal dimension
  • Functional differentiation
  • Globally coupled map
  • Linear stability analysis
  • Local field potential (LFP)
  • Measurement processes
  • Neural networks
  • Phase plane analysis
  • Physiology-oriented models
  • Qualitative analysis
  • Rate coding
  • Self-organization with constraints
  • Temporal coding

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Abeles M (1991) Corticonics. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Alligood T, Sauer T, Yorke JA (1997) Chaos. An introduction to dynamical systems. Springer, New York

    CrossRef  Google Scholar 

  • Ching S, Brown EN (2014) Modeling the dynamical effects of anesthesia on brain circuits. Curr Opin Neurobiol 25:116

    CAS  CrossRef  Google Scholar 

  • Eckmann JP, Kamphorst SO, Ruelle D (1986) Liapunov exponents from time series. Phys Rev A 34:4971

    CAS  CrossRef  Google Scholar 

  • Fellous J-M, Tiesinga PHE, Thomas PJ, Sejnowski TJ (2004) Discovering spike patterns in neuronal responses. J Neurosci 24:2989

    CAS  CrossRef  Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Academic, New York

    Google Scholar 

  • Freeman WJ (2003) Evidence from human scalp EEG of global chaotic itinerancy. Chaos 13:1067

    CrossRef  Google Scholar 

  • Fujii H, Tsuda I (2004) Itinerant dynamics of class I* neurons coupled by gap junctions. Lect Notes Comput Sci 3146:140

    CrossRef  Google Scholar 

  • Fukushima Y, Tsukada M, Tsuda I, Yamaguti Y, Kuroda S (2007) Spatial clustering property and its self-similarity in membrane potentials of hippocampal CA1 pyramidal neurons for a spatio-temporal input sequence. Cogn Neurodyn 1:305

    CrossRef  Google Scholar 

  • Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171

    CAS  CrossRef  Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334

    CAS  CrossRef  Google Scholar 

  • Hirsch W, Smale S (1974) Differentiable equations, dynamical systems, and linear algebra. Academic Press, New York

    Google Scholar 

  • Kaneko K, Tsuda I (2001) Complex systems: chaos and beyond, a constructive approach with applications in life sciences. Springer, Berlin

    Google Scholar 

  • Kaneko K, Tsuda I (2003) Chaotic itinerancy. Chaos 13:926

    CrossRef  Google Scholar 

  • Kay LM, Larry R, Freeman WJ (1996) Reafference and attractors in the olfactory system during odor recognition. Int J Neural Syst 7:489

    CAS  CrossRef  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    CrossRef  Google Scholar 

  • Luque NR, Naveros F, Carrillo RR et al (2019) Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS Comput Biol 15:e1006298

    CrossRef  Google Scholar 

  • Poincare H (1993) New methods of celestial mechanics. In: Goroff D (ed) History of modern physics and astronomy. American Institute of Physics, Woodbury, New Yorke

    Google Scholar 

  • Rabinovich M, Volkovskii A, Lecanda P et al (2001) Dynamical encoding by networks of competing neurons groups: winnerless competition. Phys Rev Lett 87:068102

    CAS  CrossRef  Google Scholar 

  • Saggio ML, Crisp D, Scott JM et al (2020) A taxonomy of seizure dynamotypes. elife 9:e55632

    CAS  CrossRef  Google Scholar 

  • Sano M, Sawada Y (1985) Measurements of the Lyapunov spectrum from chaotic time series. Phys Rev Lett 55:1082

    CAS  CrossRef  Google Scholar 

  • Schweighofer N, Doya K, Fukai H et al (2004) Chaos may enhance information transmission in the inferior olive. Proc Natl Acad Sci USA 101:4655

    CAS  CrossRef  Google Scholar 

  • Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10:161

    CrossRef  Google Scholar 

  • Sompolinsky H, Crisanti A, Sommers HJ (1988) Chaos in random neural networks. Phys Rev Lett 61:259

    CAS  CrossRef  Google Scholar 

  • Sur M, Palla SL, Roe AW (1990) Cross-modal plasticity in cortical development: differentiation and specification of sensory neocortex. Trends Neurosci 13:227

    CAS  CrossRef  Google Scholar 

  • Tadokoro S, Yamaguti Y, Fujii H, Tsuda I (2011) Transitory behaviors in diffusively coupled nonlinear oscillators. Cogn Neurodyn 5:1

    CrossRef  Google Scholar 

  • Tognoli E, Kelso JAS (2014) The metastable brain. Neuron 81:35

    CAS  CrossRef  Google Scholar 

  • Tokuda IT, Han CE, Aihara K et al (2010) The role of chaotic resonance in cerebellar learning. Neural Netw 23:836

    CrossRef  Google Scholar 

  • Tsuda I (2013) Chaotic itinerancy. Scholarpedia 8:4459

    CrossRef  Google Scholar 

  • Tsuda I, Koerner E, Shimizu H (1987) Memory dynamics in asynchronous neural networks. Prog Theor Phys 78:51

    CrossRef  Google Scholar 

  • Tsuda I, Yamaguti Y, Watanabe H (2016) Self-organization with constraints – a mathematical model for functional differentiation. Entropy 18:74

    CrossRef  Google Scholar 

  • von der Malsburg C (1981) The correlation theory of brain function. Internal report 81-2. Department. of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen. Reprinted in: Domany E, van Hemmen JL, Schulten K (eds) (1994) Models of neural networks II. Springer, Berlin

    Google Scholar 

  • Wiggins S (1990) Introduction to applied nonlinear dynamical systems and chaos. Springer, New York

    CrossRef  Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D 16:285

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Tsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Tsuda, I. (2022). Dynamics in Neural Systems. In: Pfaff, D.W., Volkow, N.D., Rubenstein, J. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_195-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6434-1_195-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6434-1

  • Online ISBN: 978-1-4614-6434-1

  • eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences