Chemogenetics: DREADDs

Living reference work entry


Chemogenetics comprises a recently developed research approach aimed at describing the ways by which engineered biological macromolecules (e.g., hybrid nucleic acids, kinases, enzymes, and receptors) selectively interact with previously unrecognized chemical actuators (e.g., inert and extrinsic drug-like small molecules). Among the various chemogenetic tools recently described, the technology known as DREADDs (designer receptors exclusively activated by designer drugs) has recently emerged as a powerful and widely adopted tool to dissect the contribution of discrete G-protein-coupled receptor (GPCR) signaling pathways in molecularly defined cells to neural function and behavior in preclinical models. In addition to its capacity as a research tool, however, DREADD technology also holds significant promise as a therapeutic platform which may be used to develop innovative clinical therapeutics, such as neuromodulation applications based on remote manipulation of cell type-specific GPCR activity. This chapter will present a brief background relating to the development of DREADD and its history, followed by highlights from recent neuroscience-relevant applications of the technology. Finally, the chapter concludes with an outlook on the potential future of DREADD technology as a clinical tool for treating brain diseases.


G-protein signaling Gi Go Gs Chemogenetics Pharmacogenetics Designer receptors DREADD KORD Kappa opioid receptor Muscarinic receptor hM3Dq hM4Di rM3Ds DREAMM PET MRI GPCR CNS Nonhuman primate CNO Salvinorin-B FDG AgRP GIRK Parkinson’s disease HSV CAV2 AAV RASSL Transgenic animals Viral targeting Synthetic biology Drug discovery 


  1. Armbruster BN, Roth BL (2005) Creation of designer biogenic amine receptors via directed molecular evolution. Neuropsychopharmacology 30(Suppl S1):S265Google Scholar
  2. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168CrossRefPubMedPubMedCentralGoogle Scholar
  3. Conklin BR, Hsiao EC, Claeysen S, Dumuis A, Srinivasan S, Forsayeth JR et al (2008) Engineering GPCR signaling pathways with RASSLs. Nat Methods 5(8):673–678CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dell’Anno MT, Caiazzo M, Leo D, Dvoretskova E, Medrihan L, Colasante G et al (2014) Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 124(7):3215–3229CrossRefPubMedPubMedCentralGoogle Scholar
  5. Farrell MS, Pei Y, Wan Y, Yadav PN, Daigle TL, Urban DJ et al (2013) A Galphas DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 38(5):854–862CrossRefPubMedPubMedCentralGoogle Scholar
  6. Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL, Kentros C et al (2012) Generation of a synthetic memory trace. Science 335(6075):1513–1516CrossRefPubMedPubMedCentralGoogle Scholar
  7. Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH, Rosemond E et al (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106(45):19197–19202CrossRefPubMedPubMedCentralGoogle Scholar
  8. Michaelides M, Hurd YL (2015) DREAMM: a biobehavioral imaging methodology for dynamic in vivo whole-brain mapping of cell type-specific functional networks. Neuropsychopharmacology 40(1):239–240CrossRefPubMedPubMedCentralGoogle Scholar
  9. Nakajima K, Wess J (2012) Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol Pharmacol 82(4):575–582CrossRefPubMedPubMedCentralGoogle Scholar
  10. Oguchi M, Okajima M, Tanaka S, Koizumi M, Kikusui T, Ichihara N et al (2015) Double virus vector infection to the prefrontal network of the macaque brain. PLoS One 10(7):e0132825CrossRefPubMedPubMedCentralGoogle Scholar
  11. Rogan SC, Roth BL (2011) Remote control of neuronal signaling. Pharmacol Rev 63(2):291–315CrossRefPubMedPubMedCentralGoogle Scholar
  12. Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus → midbrain pathway for feeding behavior. Neuron 82(4):797–808CrossRefPubMedPubMedCentralGoogle Scholar
  13. Urban DJ, Roth BL (2015) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 55:399–417CrossRefPubMedGoogle Scholar
  14. Vardy E, Robinson JE, Li C, Olsen RH, DiBerto JF, Giguere PM et al (2015) A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86(4):936–946CrossRefPubMedGoogle Scholar
  15. Zhu H, Roth BL (2015) DREADD: a chemogenetic GPCR signaling platform. Int J Neuropsychopharmacol 31;18(1)Google Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  1. 1.Biobehavioral Imaging & Molecular Neuropsychopharmacology SectionNational Institute on Drug Abuse Intramural Research ProgramBaltimoreUSA
  2. 2.Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount SinaiFriedman Brain InstituteNew YorkUSA

Personalised recommendations