Long-Term Potentiation

  • Tim Bliss
Living reference work entry


At many glutamatergic synapses in the brain, brief episodes of strong synaptic activity can lead to an enduring enhancement of synaptic strength, a property known as long-term potentiation (LTP). This chapter presents a concise overview of the cellular mechanisms responsible for LTP and of the role of LTP in learning and memory. Glutamate receptors of the NMDA subtype control the induction of LTP at many synapses, and both presynaptic and postsynaptic changes are involved in its maintenance. Recent studies employing optogenetic techniques have thrown light on how long-term synaptic changes are exploited to encode memories at the network level.


As-PaRac1 Channelrhodopsin GluA1 Immediate early genes Long-term potentiation (LTP) Associativity and cooperativity Hippocampal pathways Human hippocampus Interneurons Induction rules Learning and memory Mossy fibers Optogenetic approach Outside hippocampus Postsynaptic mechanisms Presynaptic mechanisms Retrograde messengers Synaptic tag hypothesis Metaplasticity Mossy fiber LTP NMDA receptor Presynaptic mechanisms Retrograde messengers Spike timing dependent plasticity (STDP) Stimulus-selective response potentiation Synaptic learning and memory (SPM) hypothesis Synaptic tag hypothesis Transmagnetic stimulation (TMS) Zeta inhibitory peptide (ZIP) 


References listed here are freely available via PubMed with the exception of those marked with an asterisk

  1. Barberis A, Bacci A (2015) Editorial: plasticity of GABAergic synapses. Front Cell Neurosci 9:262CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beck H, Goussakov IV, Lie A, Helmstaedter C, Elger CE (2000) Synaptic plasticity in the human dentate gyrus. J Neurosci 20:7080–7086PubMedGoogle Scholar
  3. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39CrossRefPubMedGoogle Scholar
  4. Bliss TV, Collingridge GL (2013) Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 6:5CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232(2):331–356CrossRefGoogle Scholar
  6. Bliss TVP, Collingridge GL, Morris RGM (2007) Synaptic plasticity in the Hippocampus. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The Hippocampus book. Oxford University Press, New York, pp 343–474Google Scholar
  7. Chen CC, Lu J, Zuo Y (2014) Spatiotemporal dynamics of dendritic spines in the living brain. Front Neuroanat 8:28CrossRefPubMedPubMedCentralGoogle Scholar
  8. Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334:33–46CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt 7):1659–1673CrossRefPubMedGoogle Scholar
  10. *Cooke SF, Komorowski RW, Kaplan ES, Gavornik JP, Bear MF (2015) Visual recognition memory, manifested as long-term habituation, requires synaptic plasticity in V1. Nat Neurosci 18(2):262–271CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dudek S, Bear MF (1993) Bidirectional long-term modifications of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 13(7):2910–2918PubMedGoogle Scholar
  12. Enoki R, Hu YL, Hamilton D, Fine A (2009) Expression of long-term plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal analysis. Neuron 62:242–253CrossRefPubMedGoogle Scholar
  13. Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75(4):556–571CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gruart A, Leal-Campanario R, Lopez-Ramos JC, Delgado-Garcia JM (2015) Functional basis of associative learning and their relationships with long-term potentiation evoked in the involved neural circuits: lessons from studies in behaving mammals. Neurobiol Learn Mem 124:3–18CrossRefPubMedGoogle Scholar
  15. *Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, Kuhlman B, Hahn KM, Kasai H (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525(7569):333–338CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar purkinje cells. J Physiol 324:113–134CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jensen V, Kaiser KM, Borchardt T, Adelmann G, Rozov A, Burnashev N, Brix C, Frotscher M, Andersen P, Hvalby O, Sakmann B, Seeburg PH, Sprengel R (2003) A juvenile form of postsynaptic hippocampal long-term potentiation in mice deficient for the AMPA receptor subunit GluR-A. J Physiol 553(Pt 3):843–856CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kano M (2014) Control of synaptic function by endocannabinoid-mediated retrograde signaling. Proc Jpn Acad Ser B Phys Biol Sci 90(7):235–250CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kneussel M, Triller A, Choquet D (2014) SnapShot: receptor dynamics at plastic synapses. Cell 157(7):1738–1738e1731CrossRefPubMedGoogle Scholar
  20. Laezza F, Dingledine R (2011) Induction and expression rules of synaptic plasticity in hippocampal interneurons. Neuropharmacology 60(5):720–729CrossRefPubMedPubMedCentralGoogle Scholar
  21. *Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381–385CrossRefPubMedPubMedCentralGoogle Scholar
  22. Luscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69(4):650–663CrossRefPubMedPubMedCentralGoogle Scholar
  23. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21CrossRefPubMedGoogle Scholar
  24. Morris RG, Frey U (1997) Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Philos Trans R Soc Lond B Biol Sci 352(1360):1489–1503CrossRefPubMedPubMedCentralGoogle Scholar
  25. *Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313(5790):1141–1144CrossRefPubMedGoogle Scholar
  26. Sandkuhler J, Gruber-Schoffnegger D (2012) Hyperalgesia by synaptic long-term potentiation (LTP): an update. Curr Opin Pharmacol 12(1):18–27CrossRefPubMedPubMedCentralGoogle Scholar
  27. Steward O, Farris S, Pirbhoy PS, Darnell J, Driesche SJ (2014) Localization and local translation of Arc/Arg3.1 mRNA at synapses: some observations and paradoxes. Front Mol Neurosci 7:101PubMedPubMedCentralGoogle Scholar
  28. Takeuchi T, Duszkiewicz AJ, Morris RG (2014) The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci 369(1633):20130288CrossRefPubMedPubMedCentralGoogle Scholar
  29. Tonegawa S, Pignatelli M, Roy DS, Ryan TJ (2015) Memory engram storage and retrieval. Curr Opin Neurobiol 35:101–109CrossRefPubMedGoogle Scholar
  30. Turrigiano G (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 4(1):a005736CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wigstrom H, Gustafsson B, Huang C-C, Abraham WC (1986) Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. Acta Physiol Scand 126:317–319CrossRefPubMedGoogle Scholar
  32. *Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A, Kaiser KM, Koster HJ, Borchardt T, Worley P, Lubke J, Frotscher M, Kelly PH, Sommer B, Andersen P, Seeburg PH, Sakmann B (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284(5421):1805–1811CrossRefPubMedGoogle Scholar
  33. Zhuo M (2014) Long-term potentiation in the anterior cingulate cortex and chronic pain. Philos Trans R Soc Lond B Biol Sci 369:20130146Google Scholar

Copyright information

© Crown Copyright 2016

Authors and Affiliations

  1. 1.Division of NeurophysiologyThe Francis Crick InstituteLondonUK

Personalised recommendations