Skip to main content

Regressive Phenomena: Refining Connections

  • Living reference work entry
  • First Online:
Neuroscience in the 21st Century

Abstract

Progressive events, such as the elaboration of axons and dendrites, create a template for the circuits that govern the many functions of our nervous system. As the nervous system develops, neurons are instructed through the extracellular milieu by guidance cues and form synaptic connections once they have reached their target region. Progressive events result not only in the creation of the proper circuitry, but also the formation of a number of supernumerary connections. In order for the nervous system to function properly, these connections must be removed through regressive events. Regressive events encompass a number of developmental processes, ranging from the removal of entire neurons and their processes, to restraining the development of microstructures at the level of the synapse. These processes often share a number of characteristics with programmed cell death. Furthermore, many of the guidance cues that instructed neurons to their target initially also regulate regressive events later in development. Beyond the removal of supernumerary connections, regressive processes also allow for the creation of a number of complex synaptic structures and the refinement of individual connections. Thus, the formation of a healthy and functional nervous system requires not only progressive events that establish initial neural connectivity, but also regressive events that further refine these neuronal circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Albeg A, Smith CJ, Chatzigeorgiou M, Feitelson DG, Hall DH, Schafer WR, Miller DM 3rd, Treinin M (2011) C. elegans multi-dendritic sensory neurons: morphology and function. Mol Cell Neurosci 46(1):308–317. doi:10.1016/j.mcn.2010.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andjus PR, Zhu L, Cesa R, Carulli D, Strata P (2003) A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum. Neuroscience 121(3):563–572

    Article  CAS  PubMed  Google Scholar 

  • Awasaki T, Ito K (2004) Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr Biol 14(8):668–677. doi:10.1016/j.cub.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  • Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A 85(21):8335–8339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagri A, Cheng HJ, Yaron A, Pleasure SJ, Tessier-Lavigne M (2003) Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113(3):285–299

    Article  CAS  PubMed  Google Scholar 

  • Bashaw GJ, Klein R (2010) Signaling from axon guidance receptors. Cold Spring Harb Perspect Biol 2(5):a001941. doi:10.1101/cshperspect.a001941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bialas AR, Stevens B (2013) TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 16(12):1773–1782. doi:10.1038/nn.3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgin C, Murai KK, Richter M, Pasquale EB (2007) The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J Cell Biol 178(7):1295–1307. doi:10.1083/jcb.200610139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravin M, Morando L, Vercelli A, Rossi F, Strata P (1999) Control of spine formation by electrical activity in the adult rat cerebellum. Proc Natl Acad Sci U S A 96(4):1704–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cang J, Feldheim DA (2013) Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci 36:51–77. doi:10.1146/annurev-neuro-062012-170341

    Article  CAS  PubMed  Google Scholar 

  • Cang J, Renteria RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP (2005) Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48(5):797–809. doi:10.1016/j.neuron.2005.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cang J, Wang L, Stryker MP, Feldheim DA (2008) Roles of ephrin-as and structured activity in the development of functional maps in the superior colliculus. J Neurosci 28(43):11015–11023. doi:10.1523/JNEUROSCI.2478-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesa R, Scelfo B, Strata P (2007) Activity-dependent presynaptic and postsynaptic structural plasticity in the mature cerebellum. J Neurosci 27(17):4603–4611. doi:10.1523/JNEUROSCI.5617-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC, Thompson A, Chen C, Smith SJ, Barres BA (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504(7480):394–400. doi:10.1038/nature12776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman MP, Freeman MR (2010) Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci 33:245–267. doi:10.1146/annurev-neuro-060909-153248

    Article  CAS  PubMed  Google Scholar 

  • Cowan CA, Henkemeyer M (2001) The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413(6852):174–179. doi:10.1038/35093123

    Article  CAS  PubMed  Google Scholar 

  • Cowan CA, Henkemeyer M (2002) Ephrins in reverse, park and drive. Trends Cell Biol 12(7):339–346

    Article  CAS  PubMed  Google Scholar 

  • Crepel F, Mariani J, Delhaye-Bouchaud N (1976) Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol 7(6):567–578. doi:10.1002/neu.480070609

    Article  CAS  PubMed  Google Scholar 

  • Crepel F, Delhaye-Bouchaud N, Dupont JL (1981) Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, x-irradiated and hypothyroid rats. Brain Res 227(1):59–71

    Article  CAS  PubMed  Google Scholar 

  • Cusack CL, Swahari V, Hampton Henley W, Michael Ramsey J, Deshmukh M (2013) Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun 4:1876. doi:10.1038/ncomms2910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demyanenko GP, Mohan V, Zhang X, Brennaman LH, Dharbal KE, Tran TS, Manis PB, Maness PF (2014) Neural cell adhesion molecule NrCAM regulates Semaphorin 3F-induced dendritic spine remodeling. J Neurosci 34(34):11274–11287. doi:10.1523/JNEUROSCI.1774-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denault JB, Salvesen GS (2002) Caspases: keys in the ignition of cell death. Chem Rev 102(12):4489–4500

    Article  CAS  PubMed  Google Scholar 

  • Feldheim DA, Vanderhaeghen P, Hansen MJ, Frisen J, Lu Q, Barbacid M, Flanagan JG (1998) Topographic guidance labels in a sensory projection to the forebrain. Neuron 21(6):1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Freeman MR (2014) Signaling mechanisms regulating Wallerian degeneration. Curr Opin Neurobiol 27:224–231. doi:10.1016/j.conb.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  • George EB, Glass JD, Griffin JW (1995) Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci 15(10):6445–6452

    CAS  PubMed  Google Scholar 

  • Gray DC, Mahrus S, Wells JA (2010) Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 142(4):637–646. doi:10.1016/j.cell.2010.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubb MS, Rossi FM, Changeux JP, Thompson ID (2003) Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40(6):1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Haase G, Pettmann B, Raoul C, Henderson CE (2008) Signaling by death receptors in the nervous system. Curr Opin Neurobiol 18(3):284–291. doi:10.1016/j.conb.2008.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamburger V, Levi-Montalcini R (1949) Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111(3):457–501

    Article  CAS  PubMed  Google Scholar 

  • Harrington AW, Ginty DD (2013) Long-distance retrograde neurotrophic factor signalling in neurons. Nat Rev Neurosci 14(3):177–187. doi:10.1038/nrn3253

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Ichikawa R, Takechi H, Inoue Y, Aiba A, Sakimura K, Mishina M, Hashikawa T, Konnerth A, Watanabe M, Kano M (2001) Roles of glutamate receptor delta 2 subunit (GluRdelta 2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J Neurosci 21(24):9701–9712

    CAS  PubMed  Google Scholar 

  • Hashimoto K, Ichikawa R, Kitamura K, Watanabe M, Kano M (2009a) Translocation of a “winner” climbing fiber to the Purkinje cell dendrite and subsequent elimination of “losers” from the soma in developing cerebellum. Neuron 63(1):106–118. doi:10.1016/j.neuron.2009.06.008

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M (2009b) Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum. Neuroscience 162(3):601–611. doi:10.1016/j.neuroscience.2008.12.037

    Article  CAS  PubMed  Google Scholar 

  • Hoopfer ED, McLaughlin T, Watts RJ, Schuldiner O, O’Leary DD, Luo L (2006) Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50(6):883–895. doi:10.1016/j.neuron.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  • Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, Katsuki M, Aiba A (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288(5472):1832–1835

    Article  CAS  PubMed  Google Scholar 

  • Ito M (1984) The modifiable neuronal network of the cerebellum. Jpn J Physiol 34(5):781–792

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4(2):139–163

    Article  CAS  PubMed  Google Scholar 

  • Kakegawa W, Mitakidis N, Miura E, Abe M, Matsuda K, Takeo YH, Kohda K, Motohashi J, Takahashi A, Nagao S, Muramatsu S, Watanabe M, Sakimura K, Aricescu AR, Yuzaki M (2015) Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron 85(2):316–329. doi:10.1016/j.neuron.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa S, Yamasaki M, Watanabe M, Kano M (2000) Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci 20(13):4954–4961

    CAS  PubMed  Google Scholar 

  • Kakizawa S, Miyazaki T, Yanagihara D, Iino M, Watanabe M, Kano M (2005) Maintenance of presynaptic function by AMPA receptor-mediated excitatory postsynaptic activity in adult brain. Proc Natl Acad Sci U S A 102(52):19180–19185. doi:10.1073/pnas.0504359103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanamori T, Kanai MI, Dairyo Y, Yasunaga K, Morikawa RK, Emoto K (2013) Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory neurons. Science 340(6139):1475–1478. doi:10.1126/science.1234879

    Article  CAS  PubMed  Google Scholar 

  • Kano M, Hashimoto K, Kurihara H, Watanabe M, Inoue Y, Aiba A, Tonegawa S (1997) Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 18(1):71–79

    Article  CAS  PubMed  Google Scholar 

  • Kirilly D, Gu Y, Huang Y, Wu Z, Bashirullah A, Low BC, Kolodkin AL, Wang H, Yu F (2009) A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning. Nat Neurosci 12(12):1497–1505. doi:10.1038/nn.2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koropouli E, Kolodkin AL (2014) Semaphorins and the dynamic regulation of synapse assembly, refinement, and function. Curr Opin Neurobiol 27:1–7. doi:10.1016/j.conb.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  • Kuo CT, Jan LY, Jan YN (2005) Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc Natl Acad Sci U S A 102(42):15230–15235. doi:10.1073/pnas.0507393102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo CT, Zhu S, Younger S, Jan LY, Jan YN (2006) Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51(3):283–290. doi:10.1016/j.neuron.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  • Lee JC (1963) Electron microscopy of Wallerian degeneration. J Comp Neurol 120:65–79

    Article  CAS  PubMed  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237(4819):1154–1162

    Article  CAS  PubMed  Google Scholar 

  • Liu XB, Low LK, Jones EG, Cheng HJ (2005) Stereotyped axon pruning via plexin signaling is associated with synaptic complex elimination in the hippocampus. J Neurosci 25(40):9124–9134. doi:10.1523/JNEUROSCI.2648-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Rutlin M, Huang S, Barrick CA, Wang F, Jones KR, Tessarollo L, Ginty DD (2012) Sexually dimorphic BDNF signaling directs sensory innervation of the mammary gland. Science 338(6112):1357–1360. doi:10.1126/science.1228258

    Article  CAS  PubMed  Google Scholar 

  • Lorenzetto E, Caselli L, Feng G, Yuan W, Nerbonne JM, Sanes JR, Buffelli M (2009) Genetic perturbation of postsynaptic activity regulates synapse elimination in developing cerebellum. Proc Natl Acad Sci U S A 106(38):16475–16480. doi:10.1073/pnas.0907298106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low LK, Liu XB, Faulkner RL, Coble J, Cheng HJ (2008) Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex. Proc Natl Acad Sci U S A 105(23):8136–8141. doi:10.1073/pnas.0803849105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S (1989) Absence of Wallerian Degeneration does not Hinder Regeneration in Peripheral Nerve. Eur J Neurosci 1(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Ferguson TA, Schoch KM, Li J, Qian Y, Shofer FS, Saatman KE, Neumar RW (2013) Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration. Neurobiol Dis 56:34–46. doi:10.1016/j.nbd.2013.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, Thomson D, Gillingwater T, Court F, Conforti L, Fernando FS, Tarlton A, Andressen C, Addicks K, Magni G, Ribchester RR, Perry VH, Coleman MP (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4(12):1199–1206. doi:10.1038/nn770

    Article  CAS  PubMed  Google Scholar 

  • Mariani J, Changeux JP (1981) Ontogenesis of olivocerebellar relationships. II. Spontaneous activity of inferior olivary neurons and climbing fibermediated activity of cerebellar Purkinje cells in developing rats. J Neurosci 1(7):703–709

    CAS  PubMed  Google Scholar 

  • Martin SM, O’Brien GS, Portera-Cailliau C, Sagasti A (2010) Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning. Development 137(23):3985–3994. doi:10.1242/dev.053611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire SE, Le PT, Davis RL (2001) The role of Drosophila mushroom body signaling in olfactory memory. Science 293(5533):1330–1333. doi:10.1126/science.1062622

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin T, O’Leary DD (2005) Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28:327–355. doi:10.1146/annurev.neuro.28.061604.135714

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin T, Torborg CL, Feller MB, O’Leary DD (2003) Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40(6):1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Mizumoto K, Shen K (2013a) Interaxonal interaction defines tiled presynaptic innervation in C. elegans. Neuron 77(4):655–666. doi:10.1016/j.neuron.2012.12.031

    Article  CAS  PubMed  Google Scholar 

  • Mizumoto K, Shen K (2013b) Two Wnts instruct topographic synaptic innervation in C. elegans. Cell Rep 5(2):389–396. doi:10.1016/j.celrep.2013.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muir-Robinson G, Hwang BJ, Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci 22(13):5259–5264. doi:20026563

    Google Scholar 

  • Nakamura H, O’Leary DD (1989) Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. J Neurosci 9(11):3776–3795

    CAS  PubMed  Google Scholar 

  • Napper RM, Harvey RJ (1988) Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J Comp Neurol 274(2):168–177. doi:10.1002/cne.902740204

    Article  CAS  PubMed  Google Scholar 

  • Neukomm LJ, Freeman MR (2014) Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol 24(9):515–523. doi:10.1016/j.tcb.2014.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232):981–989. doi:10.1038/nature07767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen O, Kallop DY, McLaughlin T, Huntwork-Rodriguez S, Wu Z, Duggan CD, Simon DJ, Lu Y, Easley-Neal C, Takeda K, Hass PE, Jaworski A, O’Leary DD, Weimer RM, Tessier-Lavigne M (2014) Genetic analysis reveals that amyloid precursor protein and death receptor 6 function in the same pathway to control axonal pruning independent of beta-secretase. J Neurosci 34(19):6438–6447. doi:10.1523/JNEUROSCI.3522-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppenheim RW (1989) The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci 12(7):252–255

    Article  CAS  PubMed  Google Scholar 

  • Oren-Suissa M, Hall DH, Treinin M, Shemer G, Podbilewicz B (2010) The fusogen EFF-1 controls sculpting of mechanosensory dendrites. Science 328(5983):1285–1288. doi:10.1126/science.1189095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH, Sheehan AE, Avery MA, Hackett R, Logan MA, MacDonald JM, Ziegenfuss JS, Milde S, Hou YJ, Nathan C, Ding A, Brown RH Jr, Conforti L, Coleman M, Tessier-Lavigne M, Zuchner S, Freeman MR (2012) dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337(6093):481–484. doi:10.1126/science.1223899

    Article  CAS  PubMed  Google Scholar 

  • Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. doi:10.1126/science.1202529

    Article  CAS  PubMed  Google Scholar 

  • Park M, Shen K (2012) WNTs in synapse formation and neuronal circuitry. Embo J 31(12):2697–2704. doi:10.1038/emboj.2012.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasterkamp RJ, Giger RJ (2009) Semaphorin function in neural plasticity and disease. Curr Opin Neurobiol 19(3):263–274. doi:10.1016/j.conb.2009.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M (2003) Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol 163(4):789–799. doi:10.1083/jcb.200307130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccomagno, MM, Kolodkin AL (2015) Sculpting neural circuits by axon and dendrite pruning. Ann Revs Cell Dev Biol 31:779–805

    Article  CAS  Google Scholar 

  • Riccomagno MM, Hurtado A, Wang H, Macopson JG, Griner EM, Betz A, Brose N, Kazanietz MG, Kolodkin AL (2012) The RacGAP beta2-Chimaerin selectively mediates axonal pruning in the hippocampus. Cell 149(7):1594–1606. doi:10.1016/j.cell.2012.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705. doi:10.1016/j.neuron.2012.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha BR, Grueber WB (2010) Neuronal morphogenesis: worms get an EFF in dendritic arborization. Curr Biol 20(16):R673–675. doi:10.1016/j.cub.2010.06.053

    Article  CAS  PubMed  Google Scholar 

  • Simon DK, O’Leary DD (1990) Limited topographic specificity in the targeting and branching of mammalian retinal axons. Dev Biol 137(1):125–134

    Article  CAS  PubMed  Google Scholar 

  • Simon DJ, Weimer RM, McLaughlin T, Kallop D, Stanger K, Yang J, O’Leary DD, Hannoush RN, Tessier-Lavigne M (2012) A caspase cascade regulating developmental axon degeneration. J Neurosci 32(49):17540–17553. doi:10.1523/JNEUROSCI.3012-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srahna M, Leyssen M, Choi CM, Fradkin LG, Noordermeer JN, Hassan BA (2006) A signaling network for patterning of neuronal connectivity in the Drosophila brain. PLoS Biol 4(11), e348. doi:10.1371/journal.pbio.0040348

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. doi:10.1016/j.cell.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  • Thomas PK (1964) Changes in the endoneurial sheaths of peripheral myelinated nerve fibres during Wallerian degeneration. J Anat 98:175–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas PK, Sheldon H (1964) Tubular arrays derived from myelin breakdown during Wallerian degeneration of peripheral nerve. J Cell Biol 22:715–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tounekti O, Zhang Y, Klaiman G, Goodyer CG, LeBlanc A (2004) Proteasomal degradation of caspase-6 in 17beta-estradiol-treated neurons. J Neurochem 89(3):561–568. doi:10.1111/j.1471-4159.2004.02349.x

    Article  CAS  PubMed  Google Scholar 

  • Tran TS, Kolodkin AL, Bharadwaj R (2007) Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23:263–292. doi:10.1146/annurev.cellbio.22.010605.093554

    Article  CAS  PubMed  Google Scholar 

  • Tran TS, Rubio ME, Clem RL, Johnson D, Case L, Tessier-Lavigne M, Huganir RL, Ginty DD, Kolodkin AL (2009) Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462(7276):1065–1069. doi:10.1038/nature08628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triplett JW, Owens MT, Yamada J, Lemke G, Cang J, Stryker MP, Feldheim DA (2009) Retinal input instructs alignment of visual topographic maps. Cell 139(1):175–185. doi:10.1016/j.cell.2009.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M, Taguchi R, Sakimura K, Mishina M (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141(6):1068–1079. doi:10.1016/j.cell.2010.04.035

    Article  CAS  PubMed  Google Scholar 

  • Uesaka N, Uchigashima M, Mikuni T, Nakazawa T, Nakao H, Hirai H, Aiba A, Watanabe M, Kano M (2014) Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science 344(6187):1020–1023. doi:10.1126/science.1252514

    Article  CAS  PubMed  Google Scholar 

  • Unsain N, Higgins JM, Parker KN, Johnstone AD, Barker PA (2013) XIAP regulates caspase activity in degenerating axons. Cell Rep 4(4):751–763. doi:10.1016/j.celrep.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M (2008) Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells. Tohoku J Exp Med 214(3):175–190

    Article  CAS  PubMed  Google Scholar 

  • Watts RJ, Hoopfer ED, Luo L (2003) Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38(6):871–885

    Article  CAS  PubMed  Google Scholar 

  • Watts RJ, Schuldiner O, Perrino J, Larsen C, Luo L (2004) Glia engulf degenerating axons during developmental axon pruning. Curr Biol 14(8):678–684. doi:10.1016/j.cub.2004.03.035

    Article  CAS  PubMed  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 275(938):327–348

    Article  CAS  Google Scholar 

  • Williams DW, Truman JW (2005) Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development 132(16):3631–3642. doi:10.1242/dev.01928

    Article  CAS  PubMed  Google Scholar 

  • Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW (2006) Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci 9(10):1234–1236. doi:10.1038/nn1774

    Article  CAS  PubMed  Google Scholar 

  • Wong JJ, Li S, Lim EK, Wang Y, Wang C, Zhang H, Kirilly D, Wu C, Liou YC, Wang H, Yu F (2013) A Cullin1-based SCF E3 ubiquitin ligase targets the InR/PI3K/TOR pathway to regulate neuronal pruning. PLoS Biol 11(9), e1001657. doi:10.1371/journal.pbio.1001657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu NJ, Henkemeyer M (2009) Ephrin-B3 reverse signaling through Grb4 and cytoskeletal regulators mediates axon pruning. Nat Neurosci 12(3):268–276. doi:10.1038/nn.2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu NJ, Sun S, Gibson JR, Henkemeyer M (2011) A dual shaping mechanism for postsynaptic ephrin-B3 as a receptor that sculpts dendrites and synapses. Nat Neurosci 14(11):1421–1429. doi:10.1038/nn.2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Weimer RM, Kallop D, Olsen O, Wu Z, Renier N, Uryu K, Tessier-Lavigne M (2013) Regulation of axon degeneration after injury and in development by the endogenous calpain inhibitor calpastatin. Neuron 80(5):1175–1189. doi:10.1016/j.neuron.2013.08.034

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Schuldiner O (2014) Axon and dendrite pruning in Drosophila. Curr Opin Neurobiol 27:192–198. doi:10.1016/j.conb.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  • Zhai Q, Wang J, Kim A, Liu Q, Watts R, Hoopfer E, Mitchison T, Luo L, He Z (2003) Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron 39(2):217–225

    Article  CAS  PubMed  Google Scholar 

  • Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vyssotski AL, Bifone A, Gozzi A, Ragozzino D, Gross CT (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17(3):400–406. doi:10.1038/nn.3641

    Article  CAS  PubMed  Google Scholar 

  • Zschatzsch M, Oliva C, Langen M, De Geest N, Ozel MN, Williamson WR, Lemon WC, Soldano A, Munck S, Hiesinger PR, Sanchez-Soriano N, Hassan BA (2014) Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling. Elife 3, e01699. doi:10.7554/eLife.01699

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alex L. Kolodkin or Martin M. Riccomagno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Agnew-Svoboda, W., Kolodkin, A.L., Riccomagno, M.M. (2015). Regressive Phenomena: Refining Connections. In: Pfaff, D., Volkow, N. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_132-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6434-1_132-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6434-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics