Advertisement

Regressive Phenomena: Refining Connections

  • Will Agnew-Svoboda
  • Alex L. KolodkinEmail author
  • Martin M. RiccomagnoEmail author
Living reference work entry

Abstract

Progressive events, such as the elaboration of axons and dendrites, create a template for the circuits that govern the many functions of our nervous system. As the nervous system develops, neurons are instructed through the extracellular milieu by guidance cues and form synaptic connections once they have reached their target region. Progressive events result not only in the creation of the proper circuitry, but also the formation of a number of supernumerary connections. In order for the nervous system to function properly, these connections must be removed through regressive events. Regressive events encompass a number of developmental processes, ranging from the removal of entire neurons and their processes, to restraining the development of microstructures at the level of the synapse. These processes often share a number of characteristics with programmed cell death. Furthermore, many of the guidance cues that instructed neurons to their target initially also regulate regressive events later in development. Beyond the removal of supernumerary connections, regressive processes also allow for the creation of a number of complex synaptic structures and the refinement of individual connections. Thus, the formation of a healthy and functional nervous system requires not only progressive events that establish initial neural connectivity, but also regressive events that further refine these neuronal circuits.

Keywords

Cell death Apoptosis Pruning Axon degeneration Axon retraction Synapse elimination Complement cascade Semaphorins Ephrins Wallerian degeneration Spine remodeling Neuronal activity 

References

  1. Albeg A, Smith CJ, Chatzigeorgiou M, Feitelson DG, Hall DH, Schafer WR, Miller DM 3rd, Treinin M (2011) C. elegans multi-dendritic sensory neurons: morphology and function. Mol Cell Neurosci 46(1):308–317. doi:10.1016/j.mcn.2010.10.001PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andjus PR, Zhu L, Cesa R, Carulli D, Strata P (2003) A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum. Neuroscience 121(3):563–572PubMedCrossRefGoogle Scholar
  3. Awasaki T, Ito K (2004) Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr Biol 14(8):668–677. doi:10.1016/j.cub.2004.04.001PubMedCrossRefGoogle Scholar
  4. Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A 85(21):8335–8339PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bagri A, Cheng HJ, Yaron A, Pleasure SJ, Tessier-Lavigne M (2003) Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113(3):285–299PubMedCrossRefGoogle Scholar
  6. Bashaw GJ, Klein R (2010) Signaling from axon guidance receptors. Cold Spring Harb Perspect Biol 2(5):a001941. doi:10.1101/cshperspect.a001941PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bialas AR, Stevens B (2013) TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 16(12):1773–1782. doi:10.1038/nn.3560PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bourgin C, Murai KK, Richter M, Pasquale EB (2007) The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J Cell Biol 178(7):1295–1307. doi:10.1083/jcb.200610139PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bravin M, Morando L, Vercelli A, Rossi F, Strata P (1999) Control of spine formation by electrical activity in the adult rat cerebellum. Proc Natl Acad Sci U S A 96(4):1704–1709PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cang J, Feldheim DA (2013) Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci 36:51–77. doi:10.1146/annurev-neuro-062012-170341PubMedCrossRefGoogle Scholar
  11. Cang J, Renteria RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP (2005) Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48(5):797–809. doi:10.1016/j.neuron.2005.09.015PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cang J, Wang L, Stryker MP, Feldheim DA (2008) Roles of ephrin-as and structured activity in the development of functional maps in the superior colliculus. J Neurosci 28(43):11015–11023. doi:10.1523/JNEUROSCI.2478-08.2008PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cesa R, Scelfo B, Strata P (2007) Activity-dependent presynaptic and postsynaptic structural plasticity in the mature cerebellum. J Neurosci 27(17):4603–4611. doi:10.1523/JNEUROSCI.5617-06.2007PubMedCrossRefGoogle Scholar
  14. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC, Thompson A, Chen C, Smith SJ, Barres BA (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504(7480):394–400. doi:10.1038/nature12776PubMedPubMedCentralCrossRefGoogle Scholar
  15. Coleman MP, Freeman MR (2010) Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci 33:245–267. doi:10.1146/annurev-neuro-060909-153248PubMedCrossRefGoogle Scholar
  16. Cowan CA, Henkemeyer M (2001) The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413(6852):174–179. doi:10.1038/35093123PubMedCrossRefGoogle Scholar
  17. Cowan CA, Henkemeyer M (2002) Ephrins in reverse, park and drive. Trends Cell Biol 12(7):339–346PubMedCrossRefGoogle Scholar
  18. Crepel F, Mariani J, Delhaye-Bouchaud N (1976) Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol 7(6):567–578. doi:10.1002/neu.480070609PubMedCrossRefGoogle Scholar
  19. Crepel F, Delhaye-Bouchaud N, Dupont JL (1981) Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, x-irradiated and hypothyroid rats. Brain Res 227(1):59–71PubMedCrossRefGoogle Scholar
  20. Cusack CL, Swahari V, Hampton Henley W, Michael Ramsey J, Deshmukh M (2013) Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun 4:1876. doi:10.1038/ncomms2910PubMedPubMedCentralCrossRefGoogle Scholar
  21. Demyanenko GP, Mohan V, Zhang X, Brennaman LH, Dharbal KE, Tran TS, Manis PB, Maness PF (2014) Neural cell adhesion molecule NrCAM regulates Semaphorin 3F-induced dendritic spine remodeling. J Neurosci 34(34):11274–11287. doi:10.1523/JNEUROSCI.1774-14.2014PubMedPubMedCentralCrossRefGoogle Scholar
  22. Denault JB, Salvesen GS (2002) Caspases: keys in the ignition of cell death. Chem Rev 102(12):4489–4500PubMedCrossRefGoogle Scholar
  23. Feldheim DA, Vanderhaeghen P, Hansen MJ, Frisen J, Lu Q, Barbacid M, Flanagan JG (1998) Topographic guidance labels in a sensory projection to the forebrain. Neuron 21(6):1303–1313PubMedCrossRefGoogle Scholar
  24. Freeman MR (2014) Signaling mechanisms regulating Wallerian degeneration. Curr Opin Neurobiol 27:224–231. doi:10.1016/j.conb.2014.05.001PubMedCrossRefGoogle Scholar
  25. George EB, Glass JD, Griffin JW (1995) Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci 15(10):6445–6452PubMedGoogle Scholar
  26. Gray DC, Mahrus S, Wells JA (2010) Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 142(4):637–646. doi:10.1016/j.cell.2010.07.014PubMedPubMedCentralCrossRefGoogle Scholar
  27. Grubb MS, Rossi FM, Changeux JP, Thompson ID (2003) Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40(6):1161–1172PubMedCrossRefGoogle Scholar
  28. Haase G, Pettmann B, Raoul C, Henderson CE (2008) Signaling by death receptors in the nervous system. Curr Opin Neurobiol 18(3):284–291. doi:10.1016/j.conb.2008.07.013PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hamburger V, Levi-Montalcini R (1949) Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111(3):457–501PubMedCrossRefGoogle Scholar
  30. Harrington AW, Ginty DD (2013) Long-distance retrograde neurotrophic factor signalling in neurons. Nat Rev Neurosci 14(3):177–187. doi:10.1038/nrn3253PubMedCrossRefGoogle Scholar
  31. Hashimoto K, Ichikawa R, Takechi H, Inoue Y, Aiba A, Sakimura K, Mishina M, Hashikawa T, Konnerth A, Watanabe M, Kano M (2001) Roles of glutamate receptor delta 2 subunit (GluRdelta 2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J Neurosci 21(24):9701–9712PubMedGoogle Scholar
  32. Hashimoto K, Ichikawa R, Kitamura K, Watanabe M, Kano M (2009a) Translocation of a “winner” climbing fiber to the Purkinje cell dendrite and subsequent elimination of “losers” from the soma in developing cerebellum. Neuron 63(1):106–118. doi:10.1016/j.neuron.2009.06.008PubMedCrossRefGoogle Scholar
  33. Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M (2009b) Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum. Neuroscience 162(3):601–611. doi:10.1016/j.neuroscience.2008.12.037PubMedCrossRefGoogle Scholar
  34. Hoopfer ED, McLaughlin T, Watts RJ, Schuldiner O, O’Leary DD, Luo L (2006) Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50(6):883–895. doi:10.1016/j.neuron.2006.05.013PubMedCrossRefGoogle Scholar
  35. Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, Katsuki M, Aiba A (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288(5472):1832–1835PubMedCrossRefGoogle Scholar
  36. Ito M (1984) The modifiable neuronal network of the cerebellum. Jpn J Physiol 34(5):781–792PubMedCrossRefGoogle Scholar
  37. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4(2):139–163PubMedCrossRefGoogle Scholar
  38. Kakegawa W, Mitakidis N, Miura E, Abe M, Matsuda K, Takeo YH, Kohda K, Motohashi J, Takahashi A, Nagao S, Muramatsu S, Watanabe M, Sakimura K, Aricescu AR, Yuzaki M (2015) Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron 85(2):316–329. doi:10.1016/j.neuron.2014.12.020PubMedCrossRefGoogle Scholar
  39. Kakizawa S, Yamasaki M, Watanabe M, Kano M (2000) Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci 20(13):4954–4961PubMedGoogle Scholar
  40. Kakizawa S, Miyazaki T, Yanagihara D, Iino M, Watanabe M, Kano M (2005) Maintenance of presynaptic function by AMPA receptor-mediated excitatory postsynaptic activity in adult brain. Proc Natl Acad Sci U S A 102(52):19180–19185. doi:10.1073/pnas.0504359103PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kanamori T, Kanai MI, Dairyo Y, Yasunaga K, Morikawa RK, Emoto K (2013) Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory neurons. Science 340(6139):1475–1478. doi:10.1126/science.1234879PubMedCrossRefGoogle Scholar
  42. Kano M, Hashimoto K, Kurihara H, Watanabe M, Inoue Y, Aiba A, Tonegawa S (1997) Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 18(1):71–79PubMedCrossRefGoogle Scholar
  43. Kirilly D, Gu Y, Huang Y, Wu Z, Bashirullah A, Low BC, Kolodkin AL, Wang H, Yu F (2009) A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning. Nat Neurosci 12(12):1497–1505. doi:10.1038/nn.2415PubMedPubMedCentralCrossRefGoogle Scholar
  44. Koropouli E, Kolodkin AL (2014) Semaphorins and the dynamic regulation of synapse assembly, refinement, and function. Curr Opin Neurobiol 27:1–7. doi:10.1016/j.conb.2014.02.005PubMedCrossRefGoogle Scholar
  45. Kuo CT, Jan LY, Jan YN (2005) Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc Natl Acad Sci U S A 102(42):15230–15235. doi:10.1073/pnas.0507393102PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kuo CT, Zhu S, Younger S, Jan LY, Jan YN (2006) Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51(3):283–290. doi:10.1016/j.neuron.2006.07.014PubMedCrossRefGoogle Scholar
  47. Lee JC (1963) Electron microscopy of Wallerian degeneration. J Comp Neurol 120:65–79PubMedCrossRefGoogle Scholar
  48. Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237(4819):1154–1162PubMedCrossRefGoogle Scholar
  49. Liu XB, Low LK, Jones EG, Cheng HJ (2005) Stereotyped axon pruning via plexin signaling is associated with synaptic complex elimination in the hippocampus. J Neurosci 25(40):9124–9134. doi:10.1523/JNEUROSCI.2648-05.2005PubMedCrossRefGoogle Scholar
  50. Liu Y, Rutlin M, Huang S, Barrick CA, Wang F, Jones KR, Tessarollo L, Ginty DD (2012) Sexually dimorphic BDNF signaling directs sensory innervation of the mammary gland. Science 338(6112):1357–1360. doi:10.1126/science.1228258PubMedCrossRefGoogle Scholar
  51. Lorenzetto E, Caselli L, Feng G, Yuan W, Nerbonne JM, Sanes JR, Buffelli M (2009) Genetic perturbation of postsynaptic activity regulates synapse elimination in developing cerebellum. Proc Natl Acad Sci U S A 106(38):16475–16480. doi:10.1073/pnas.0907298106PubMedPubMedCentralCrossRefGoogle Scholar
  52. Low LK, Liu XB, Faulkner RL, Coble J, Cheng HJ (2008) Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex. Proc Natl Acad Sci U S A 105(23):8136–8141. doi:10.1073/pnas.0803849105PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S (1989) Absence of Wallerian Degeneration does not Hinder Regeneration in Peripheral Nerve. Eur J Neurosci 1(1):27–33PubMedCrossRefGoogle Scholar
  54. Ma M, Ferguson TA, Schoch KM, Li J, Qian Y, Shofer FS, Saatman KE, Neumar RW (2013) Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration. Neurobiol Dis 56:34–46. doi:10.1016/j.nbd.2013.03.009PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, Thomson D, Gillingwater T, Court F, Conforti L, Fernando FS, Tarlton A, Andressen C, Addicks K, Magni G, Ribchester RR, Perry VH, Coleman MP (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4(12):1199–1206. doi:10.1038/nn770PubMedCrossRefGoogle Scholar
  56. Mariani J, Changeux JP (1981) Ontogenesis of olivocerebellar relationships. II. Spontaneous activity of inferior olivary neurons and climbing fibermediated activity of cerebellar Purkinje cells in developing rats. J Neurosci 1(7):703–709PubMedGoogle Scholar
  57. Martin SM, O’Brien GS, Portera-Cailliau C, Sagasti A (2010) Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning. Development 137(23):3985–3994. doi:10.1242/dev.053611PubMedPubMedCentralCrossRefGoogle Scholar
  58. McGuire SE, Le PT, Davis RL (2001) The role of Drosophila mushroom body signaling in olfactory memory. Science 293(5533):1330–1333. doi:10.1126/science.1062622PubMedCrossRefGoogle Scholar
  59. McLaughlin T, O’Leary DD (2005) Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28:327–355. doi:10.1146/annurev.neuro.28.061604.135714PubMedCrossRefGoogle Scholar
  60. McLaughlin T, Torborg CL, Feller MB, O’Leary DD (2003) Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40(6):1147–1160PubMedCrossRefGoogle Scholar
  61. Mizumoto K, Shen K (2013a) Interaxonal interaction defines tiled presynaptic innervation in C. elegans. Neuron 77(4):655–666. doi:10.1016/j.neuron.2012.12.031PubMedCrossRefGoogle Scholar
  62. Mizumoto K, Shen K (2013b) Two Wnts instruct topographic synaptic innervation in C. elegans. Cell Rep 5(2):389–396. doi:10.1016/j.celrep.2013.09.011PubMedPubMedCentralCrossRefGoogle Scholar
  63. Muir-Robinson G, Hwang BJ, Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci 22(13):5259–5264. doi:20026563Google Scholar
  64. Nakamura H, O’Leary DD (1989) Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. J Neurosci 9(11):3776–3795PubMedGoogle Scholar
  65. Napper RM, Harvey RJ (1988) Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J Comp Neurol 274(2):168–177. doi:10.1002/cne.902740204PubMedCrossRefGoogle Scholar
  66. Neukomm LJ, Freeman MR (2014) Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol 24(9):515–523. doi:10.1016/j.tcb.2014.04.003PubMedPubMedCentralCrossRefGoogle Scholar
  67. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232):981–989. doi:10.1038/nature07767PubMedPubMedCentralCrossRefGoogle Scholar
  68. Olsen O, Kallop DY, McLaughlin T, Huntwork-Rodriguez S, Wu Z, Duggan CD, Simon DJ, Lu Y, Easley-Neal C, Takeda K, Hass PE, Jaworski A, O’Leary DD, Weimer RM, Tessier-Lavigne M (2014) Genetic analysis reveals that amyloid precursor protein and death receptor 6 function in the same pathway to control axonal pruning independent of beta-secretase. J Neurosci 34(19):6438–6447. doi:10.1523/JNEUROSCI.3522-13.2014PubMedPubMedCentralCrossRefGoogle Scholar
  69. Oppenheim RW (1989) The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci 12(7):252–255PubMedCrossRefGoogle Scholar
  70. Oren-Suissa M, Hall DH, Treinin M, Shemer G, Podbilewicz B (2010) The fusogen EFF-1 controls sculpting of mechanosensory dendrites. Science 328(5983):1285–1288. doi:10.1126/science.1189095PubMedPubMedCentralCrossRefGoogle Scholar
  71. Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH, Sheehan AE, Avery MA, Hackett R, Logan MA, MacDonald JM, Ziegenfuss JS, Milde S, Hou YJ, Nathan C, Ding A, Brown RH Jr, Conforti L, Coleman M, Tessier-Lavigne M, Zuchner S, Freeman MR (2012) dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337(6093):481–484. doi:10.1126/science.1223899PubMedCrossRefGoogle Scholar
  72. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. doi:10.1126/science.1202529PubMedCrossRefGoogle Scholar
  73. Park M, Shen K (2012) WNTs in synapse formation and neuronal circuitry. Embo J 31(12):2697–2704. doi:10.1038/emboj.2012.145PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pasterkamp RJ, Giger RJ (2009) Semaphorin function in neural plasticity and disease. Curr Opin Neurobiol 19(3):263–274. doi:10.1016/j.conb.2009.06.001PubMedPubMedCentralCrossRefGoogle Scholar
  75. Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M (2003) Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol 163(4):789–799. doi:10.1083/jcb.200307130PubMedPubMedCentralCrossRefGoogle Scholar
  76. Riccomagno, MM, Kolodkin AL (2015) Sculpting neural circuits by axon and dendrite pruning. Ann Revs Cell Dev Biol 31:779–805CrossRefGoogle Scholar
  77. Riccomagno MM, Hurtado A, Wang H, Macopson JG, Griner EM, Betz A, Brose N, Kazanietz MG, Kolodkin AL (2012) The RacGAP beta2-Chimaerin selectively mediates axonal pruning in the hippocampus. Cell 149(7):1594–1606. doi:10.1016/j.cell.2012.05.018PubMedPubMedCentralCrossRefGoogle Scholar
  78. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705. doi:10.1016/j.neuron.2012.03.026PubMedPubMedCentralCrossRefGoogle Scholar
  79. Shrestha BR, Grueber WB (2010) Neuronal morphogenesis: worms get an EFF in dendritic arborization. Curr Biol 20(16):R673–675. doi:10.1016/j.cub.2010.06.053PubMedCrossRefGoogle Scholar
  80. Simon DK, O’Leary DD (1990) Limited topographic specificity in the targeting and branching of mammalian retinal axons. Dev Biol 137(1):125–134PubMedCrossRefGoogle Scholar
  81. Simon DJ, Weimer RM, McLaughlin T, Kallop D, Stanger K, Yang J, O’Leary DD, Hannoush RN, Tessier-Lavigne M (2012) A caspase cascade regulating developmental axon degeneration. J Neurosci 32(49):17540–17553. doi:10.1523/JNEUROSCI.3012-12.2012PubMedPubMedCentralCrossRefGoogle Scholar
  82. Srahna M, Leyssen M, Choi CM, Fradkin LG, Noordermeer JN, Hassan BA (2006) A signaling network for patterning of neuronal connectivity in the Drosophila brain. PLoS Biol 4(11), e348. doi:10.1371/journal.pbio.0040348PubMedPubMedCentralCrossRefGoogle Scholar
  83. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. doi:10.1016/j.cell.2007.10.036PubMedCrossRefGoogle Scholar
  84. Thomas PK (1964) Changes in the endoneurial sheaths of peripheral myelinated nerve fibres during Wallerian degeneration. J Anat 98:175–182PubMedPubMedCentralGoogle Scholar
  85. Thomas PK, Sheldon H (1964) Tubular arrays derived from myelin breakdown during Wallerian degeneration of peripheral nerve. J Cell Biol 22:715–718PubMedPubMedCentralCrossRefGoogle Scholar
  86. Tounekti O, Zhang Y, Klaiman G, Goodyer CG, LeBlanc A (2004) Proteasomal degradation of caspase-6 in 17beta-estradiol-treated neurons. J Neurochem 89(3):561–568. doi:10.1111/j.1471-4159.2004.02349.xPubMedCrossRefGoogle Scholar
  87. Tran TS, Kolodkin AL, Bharadwaj R (2007) Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23:263–292. doi:10.1146/annurev.cellbio.22.010605.093554PubMedCrossRefGoogle Scholar
  88. Tran TS, Rubio ME, Clem RL, Johnson D, Case L, Tessier-Lavigne M, Huganir RL, Ginty DD, Kolodkin AL (2009) Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462(7276):1065–1069. doi:10.1038/nature08628PubMedPubMedCentralCrossRefGoogle Scholar
  89. Triplett JW, Owens MT, Yamada J, Lemke G, Cang J, Stryker MP, Feldheim DA (2009) Retinal input instructs alignment of visual topographic maps. Cell 139(1):175–185. doi:10.1016/j.cell.2009.08.028PubMedPubMedCentralCrossRefGoogle Scholar
  90. Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M, Taguchi R, Sakimura K, Mishina M (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141(6):1068–1079. doi:10.1016/j.cell.2010.04.035PubMedCrossRefGoogle Scholar
  91. Uesaka N, Uchigashima M, Mikuni T, Nakazawa T, Nakao H, Hirai H, Aiba A, Watanabe M, Kano M (2014) Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science 344(6187):1020–1023. doi:10.1126/science.1252514PubMedCrossRefGoogle Scholar
  92. Unsain N, Higgins JM, Parker KN, Johnstone AD, Barker PA (2013) XIAP regulates caspase activity in degenerating axons. Cell Rep 4(4):751–763. doi:10.1016/j.celrep.2013.07.015PubMedCrossRefGoogle Scholar
  93. Watanabe M (2008) Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells. Tohoku J Exp Med 214(3):175–190PubMedCrossRefGoogle Scholar
  94. Watts RJ, Hoopfer ED, Luo L (2003) Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38(6):871–885PubMedCrossRefGoogle Scholar
  95. Watts RJ, Schuldiner O, Perrino J, Larsen C, Luo L (2004) Glia engulf degenerating axons during developmental axon pruning. Curr Biol 14(8):678–684. doi:10.1016/j.cub.2004.03.035PubMedCrossRefGoogle Scholar
  96. White JG, Southgate E, Thomson JN, Brenner S (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 275(938):327–348CrossRefGoogle Scholar
  97. Williams DW, Truman JW (2005) Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development 132(16):3631–3642. doi:10.1242/dev.01928PubMedCrossRefGoogle Scholar
  98. Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW (2006) Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci 9(10):1234–1236. doi:10.1038/nn1774PubMedCrossRefGoogle Scholar
  99. Wong JJ, Li S, Lim EK, Wang Y, Wang C, Zhang H, Kirilly D, Wu C, Liou YC, Wang H, Yu F (2013) A Cullin1-based SCF E3 ubiquitin ligase targets the InR/PI3K/TOR pathway to regulate neuronal pruning. PLoS Biol 11(9), e1001657. doi:10.1371/journal.pbio.1001657PubMedPubMedCentralCrossRefGoogle Scholar
  100. Xu NJ, Henkemeyer M (2009) Ephrin-B3 reverse signaling through Grb4 and cytoskeletal regulators mediates axon pruning. Nat Neurosci 12(3):268–276. doi:10.1038/nn.2254PubMedPubMedCentralCrossRefGoogle Scholar
  101. Xu NJ, Sun S, Gibson JR, Henkemeyer M (2011) A dual shaping mechanism for postsynaptic ephrin-B3 as a receptor that sculpts dendrites and synapses. Nat Neurosci 14(11):1421–1429. doi:10.1038/nn.2931PubMedPubMedCentralCrossRefGoogle Scholar
  102. Yang J, Weimer RM, Kallop D, Olsen O, Wu Z, Renier N, Uryu K, Tessier-Lavigne M (2013) Regulation of axon degeneration after injury and in development by the endogenous calpain inhibitor calpastatin. Neuron 80(5):1175–1189. doi:10.1016/j.neuron.2013.08.034PubMedCrossRefGoogle Scholar
  103. Yu F, Schuldiner O (2014) Axon and dendrite pruning in Drosophila. Curr Opin Neurobiol 27:192–198. doi:10.1016/j.conb.2014.04.005PubMedCrossRefGoogle Scholar
  104. Zhai Q, Wang J, Kim A, Liu Q, Watts R, Hoopfer E, Mitchison T, Luo L, He Z (2003) Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron 39(2):217–225PubMedCrossRefGoogle Scholar
  105. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vyssotski AL, Bifone A, Gozzi A, Ragozzino D, Gross CT (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17(3):400–406. doi:10.1038/nn.3641PubMedCrossRefGoogle Scholar
  106. Zschatzsch M, Oliva C, Langen M, De Geest N, Ozel MN, Williamson WR, Lemon WC, Soldano A, Munck S, Hiesinger PR, Sanchez-Soriano N, Hassan BA (2014) Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling. Elife 3, e01699. doi:10.7554/eLife.01699PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Cell Biology and NeuroscienceUniversity of CaliforniaRiversideUSA
  2. 2.The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical InstituteThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations