Conversion of CO2 to Value-Added Chemicals: Opportunities and Challenges

  • Arun S. Agarwal
  • Edward Rode
  • Narasi Sridhar
  • Davion Hill
Living reference work entry

Abstract

The world is likely to emit almost 40 Gt/year of CO2 into the atmosphere. Even if only a small fraction of the globally emitted CO2 is captured, there will be a large quantity of CO2 available to society for use in a variety of ways. Thus, CO2 should not be regarded as a waste product, but as an asset that, with human ingenuity, could be used in a sustainable way. Since sustainability is at the intersection of environmental, economic, and intergenerational stewardship, the selection of a CO2 utilization process must offer net CO2 and waste reductions compared to conventional methods of producing the same end product, must be economical, and must not leave any additional problems for future society to solve. The criteria for selection may involve a variety of local considerations, such as government incentives, the availability of suitable renewable energy source, availability of water and other chemicals, land use, local demand for a specific product, etc. Therefore, CO2 utilization is a locally sustainable solution, rather than a one-size-fits-all approach. Utilization of CO2 may involve mostly physical processes, such as in enhanced oil recovery (EOR), solvent use, and beverage industry, where the CO2 is essentially retained in its original valence state, or chemical processes, where its valence state undergoes a change (Fig. 1). We will focus in this chapter on chemical conversion, which broadly includes thermochemical and electrochemical processes. The critical technology development parameters as well as the barriers for adoption of utilization technologies are also discussed.

Keywords

Electrochemical CO2 utilization Formate salt Formic acid Thermochemical CO2 reduction Carbon dioxide Photoelectrochemical Electrofuel Electro-biochemical High surface area electrode Cathode Anode Faradaic efficiency Selectivity Catalyst degradation Tin cathode Methanol Solid oxide fuel cell (SOFC) Metal-free catalysts Copper cathode Technical barriers Technology adoption Electrolyzer Carbon monoxide Alcohols Hydrocarbons Electrolysis Catalyst stability Electrolyte Electrode structure Economic feasibility Overpotential CO2 to fuels CO2 to chemicals Synthesis gas 

References

  1. Agarwal AS, Zhai YM, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4:1301–1310CrossRefGoogle Scholar
  2. Akahori Y, Iwanaga N et al (2004) New electrochemical process for CO2 reduction to from formic acid from combustion flue gases. Electrochemistry 72(4):266–270Google Scholar
  3. Al-Musabbeh MA et al (2006) Enhancing methanol production by CO2 injection. Saudi Methanol Co. April 2006. http://www.co2management.org/proceedings/Abdulatif_Al_Musabbeh_Final.pdf
  4. Anawati NS, Frankel GS, Agarwal A, Sridhar N (2014) Degradation and deactivation of Sn catalyst used for CO2 reduction as function of overpotential. Electrochim Acta 133(1):188–196CrossRefGoogle Scholar
  5. Aydin R, Koleli F (2004) Electrocatalytic conversion of CO2 on a polypyrrole electrode under high pressure in methanol. Synth Met 144:75–80CrossRefGoogle Scholar
  6. Barton EE, Rampulla DM et al (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344CrossRefGoogle Scholar
  7. Belyaev V, Galvita V, Sobyanin V (1998) Effect of anodic current on carbon dioxide reforming of methane on pt electrode in a cell with solid oxide electrolyte. React Kinet Catal Lett 63:341CrossRefGoogle Scholar
  8. Bidrawn F, Kim G, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2008) Efficient reduction of CO2 in a solid oxide electrolyzer. Electrochem Solid-State Lett 11(9):B167–B170CrossRefGoogle Scholar
  9. Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205CrossRefGoogle Scholar
  10. Chaplin RPS, Wragg AA (2003) Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. J Appl Electrochem 33(12):1107–1123CrossRefGoogle Scholar
  11. Chen YH, Kanan MW (2012) Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc 134:1986–1989CrossRefGoogle Scholar
  12. Chen Y, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc 134:19969–19972CrossRefGoogle Scholar
  13. Chiacchiarelli L, Zhai Y, Frankel G, Agarwal AS, Sridhar N (2012) Cathodic degradation mechanisms of pure Sn electrocatalyst in a nitrogen atmosphere. J Appl Electrochem 42(1):21–29CrossRefGoogle Scholar
  14. Choudhary V, Rajput A, Prabhakar B (1995) Energy efficient methane-to-syngas conversion with low H2/CO ratio by simultaneous catalytic reactions of methane with carbon dioxide and oxygen. Catal Lett 32:391CrossRefGoogle Scholar
  15. Cole EB, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551CrossRefGoogle Scholar
  16. Delacourt C, Ridgway PL, Kerr JB, Newman J (2008) Design of an electrochemical cell making syngas (CO + H-2) from CO2 and H2O reduction at room temperature. J Electrochem Soc 155:B42–B49CrossRefGoogle Scholar
  17. Doi R, Ichikawa S et al (1995) Japanese Patent 08296077, JapanGoogle Scholar
  18. Dyer CK (1985) Improved nickel anodes for industrial water electrolyzers. J Electrochem Soc 132(1):64–67MathSciNetCrossRefGoogle Scholar
  19. Edwards JH, Maitra A (1995) The chemistry of methane reforming with carbon dioxide and its current and potential applications. Fuel Process Technol 42:269–289CrossRefGoogle Scholar
  20. Furukawa S, Okada M, Suzuki Y (1999) Isolation of oxygen formed during catalytic reduction of carbon dioxide using a solid electrolyte membrane. Energy Fuel 13:1074CrossRefGoogle Scholar
  21. Furuya N, Yamazaki T, Shibata M (1997) High performance Ru–Pd catalysts for CO2 reduction at gas-diffusion electrodes. J Electroanal Chem 431:39–41CrossRefGoogle Scholar
  22. Gattrell M, Gupta N et al (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19CrossRefGoogle Scholar
  23. Gattrell M, Gupta N et al (2007) Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers Manag 48(4):1255–1265CrossRefGoogle Scholar
  24. Global CCS Institute (2012) The Global Status of CCS 2012, Canberra, Australia http://hub.globalccsinstitute.com/sites/default/files/publications/47936/global-status-ccs-2012.pdf
  25. Goeppert A, Czaun M, Jones J-P, Surya Prakash GK, Olah G (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem Soc Rev 43:7957–8194CrossRefGoogle Scholar
  26. Grigoriev SA, Porembsky VI et al (2006) Pure hydrogen production by PEM electrolysis for hydrogen energy. Int J Hydrogen Energ 31(2):171–175CrossRefGoogle Scholar
  27. Gupta N, Gattrell M et al (2006) Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J Appl Electrochem 36(2):161–172CrossRefGoogle Scholar
  28. Halmann MM, Steinberg M (1999) Greenhouse gas carbon dioxide mitigation science and technology. Lewis Publishers, Boca RatonGoogle Scholar
  29. Hara K, Sakata T (1997) Electrocatalytic formation of CH4 from CO2 on a Pt gas diffusion electrode. J Electrochem Soc 144(2):539–545CrossRefGoogle Scholar
  30. Hara K, Tsuneto A et al (1994) Electrochemical reduction of CO2 on a cu electrode under high-pressure – factors that determine the product selectivity. J Electrochem Soc 141(8):2097–2103CrossRefGoogle Scholar
  31. Hinogami R, Yotsuhashi S, Deguchi M, Zenitani Y, Hashiba H, Yamada Y (2012) Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem Lett 1:H17–H19CrossRefGoogle Scholar
  32. Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon-dioxide at a copper electrode in aqueous-solution. J Chem Soc Faraday Trans 1 85:2309–2326CrossRefGoogle Scholar
  33. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal–electrodes in aqueous-media. Electrochim Acta 39:1833–1839CrossRefGoogle Scholar
  34. Hori Y, Takahashi R et al (1997) Electrochemical reduction of CO at a copper electrode. J Phys Chem B 101(36):7075–7081CrossRefGoogle Scholar
  35. Hori Y, Ito H et al (2003) Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide. Electrochim Acta 48(18):2651–2657CrossRefGoogle Scholar
  36. Hori Y, Konishi H et al (2005) “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim Acta 50(27):5354–5369CrossRefGoogle Scholar
  37. Hu B, Guild C, Sui S, Suib S (2013) Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value added products. J CO2 Util 1:18–27MATHCrossRefGoogle Scholar
  38. Huang T, Chou C (2009) Electrochemical CO2 reduction with power generation in SOFCs with Cu-added LSCF–GDC cathode. Electrochem Commun 11:1464CrossRefGoogle Scholar
  39. Ichikawa S, Doi R (1996) Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis. Catal Today 27(1–2):271–277CrossRefGoogle Scholar
  40. Ikeda S, Takagi T, Ito K (1987) Selective formation of formic-acid, oxalic-acid, and carbon-monoxide by electrochemical reduction of carbon-dioxide. Chem Soc Jpn B 60:2517–2522CrossRefGoogle Scholar
  41. Pew Charitable Trusts (2012) Research & Analysis Innovate, Manufacture, Compete: A Clean Energy Action Plan, Philadelphia, PA. http://clean-economy.org/wp-content/uploads/2013/01/Innovate-Manufacture-Compete.pdf
  42. Ishimaru S, Shiratsuchi R et al (2000) Pulsed electroreduction of CO2 on Cu-Ag alloy electrodes. J Electrochem Soc 147(5):1864–1867CrossRefGoogle Scholar
  43. Jhong HR, Brushett FR, Kenis PJA (2013a) The effects of catalyst layer deposition methodology on electrode performance. Adv Energy Mater 3(5):589–599CrossRefGoogle Scholar
  44. Jhong H-RM, Ma S, Kenis PJA (2013b) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199Google Scholar
  45. Jitaru M, Lowy DA et al (1997a) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27(8):875–889CrossRefGoogle Scholar
  46. Jitaru M, Lowy DA et al (1997b) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27(8):875–889CrossRefGoogle Scholar
  47. Kaneco S, Iiba K et al (2002) High efficiency electrochemical CO2-to-methane conversion method using methanol with lithium supporting electrolytes. Ind Eng Chem Res 41(21):5165–5170CrossRefGoogle Scholar
  48. Kaneco S, Katsumata H et al (2006a) Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes. Appl Catal B-Environ 64(1-2):139–145CrossRefGoogle Scholar
  49. Kaneco S, Katsumata H et al (2006b) Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol. Chem Eng J 116(3):227–231CrossRefGoogle Scholar
  50. Kaneco S, Iiba K et al (2007) Electrochemical reduction of high pressure carbon dioxide at a Cu electrode in cold methanol with CsOH supporting salt. Chem Eng J 128(1):47–50CrossRefGoogle Scholar
  51. Kim T, Moon S, Hong S (2002) Internal carbon dioxide reforming by methane over Ni-YSZ-CeO2 catalyst electrode in electrochemical cell. Appl Catal A 224:111CrossRefGoogle Scholar
  52. Kitamura N, Tazuke S (1983) Photoreduction of carbon dioxide to formic acid mediated by a methylviologen electron relay. Chem Lett 12:1109CrossRefGoogle Scholar
  53. Koleli F, Atilan T et al (2003) Electrochemical reduction of CO2 at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media. J Appl Electrochem 33(5):447–450CrossRefGoogle Scholar
  54. Koleli F, Ropke T, Hamann CH (2004) The reduction of CO2 on polyaniline electrode in a membrane cell. Synth Met 140:65–68CrossRefGoogle Scholar
  55. Kostecki R, Augustynski J (1994) Electrochemical reduction of CO2 at an activated silver electrode. Ber Bunsen Phys Chem 98(12):1510–1515CrossRefGoogle Scholar
  56. Kubisztal J, Budniok A (2008) Study of the oxygen evolution reaction on nickel-based composite coatings in alkaline media. Int J Hydrogen Energ 33(17):4488–4494CrossRefGoogle Scholar
  57. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059CrossRefGoogle Scholar
  58. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R, Abiade J, Yarin AL, Salehi-Khojin A (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4:2819. doi:10.1038/ncomms3819Google Scholar
  59. Labou D, Slavcheva E et al (2008) Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode. J Power Sources 185:1073–1078CrossRefGoogle Scholar
  60. Ledgard SF, Boyes M, Brentrup F (2011) Life cycle assessment of local and imported fertilisers used on New Zealand farms. http://www.massey.ac.nz/~flrc/workshops/11/Manuscripts/Ledgard_2011.pdf
  61. Lee J, Tak Y (2001) Electrocatalytic activity of Cu electrode in electroreduction of CO2. Electrochim Acta 46(19):3015–3022CrossRefGoogle Scholar
  62. Lehn J, Ziessel R (1982) Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc Natl Acad Sci U S A 79:701CrossRefGoogle Scholar
  63. Lehn J, Ziessel R (1990) Photochemical reduction of carbon dioxide to formate catalyzed by 2,2t´-bipyridine- or 1,10-phenanthroline-ruthenium(II) complexes. J Organomet Chem 382:157Google Scholar
  64. Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134:7231–7234CrossRefGoogle Scholar
  65. Li H, Oloman C (2007) Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – Part 2: scale-up. J Appl Electrochem 37(10):1107–1117CrossRefGoogle Scholar
  66. Li JW, Prentice G (1997) Electrochemical synthesis of methanol from CO2 in high-pressure electrolyte. J Electrochem Soc 144:4284–4288CrossRefGoogle Scholar
  67. Logan DA (1997) Estimating physical properties for control equipment design. Environ Prog 16:237–244CrossRefGoogle Scholar
  68. Magdesieva TV, Zhukov IV, Kravchuk DN, Semenikhin OA, Tomilova LG, Butin KP (2002) Electrocatalytic CO2 reduction in methanol catalyzed by mono-, di-, and electropolymerized phthalocyanine complexes. Russ Chem Bull 51:805–812CrossRefGoogle Scholar
  69. Mahmood MN, Masheder D et al (1987) Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon-dioxide. 1. Reduction at lead, indium-impregnated and tin-impregnated electrodes. J Appl Electrochem 17(6):1159–1170CrossRefGoogle Scholar
  70. Mao X, Alan Hatton T (2015) Recent advances in electrocatalytic reduction of carbon dioxide using metal-free catalysts. Ind Eng Chem Res 54:4033–4042CrossRefGoogle Scholar
  71. Moats MS, Miller JD, Zmierczak WW (2008) Chemical utilization of sequestered carbon dioxide as a booster of hydrogen economy. In: Neelameggham N, Reddy RG (eds) Carbon dioxide reduction metallurgy. The Minerals, Metals, and Materials Society, Warrendale, pp 19–23Google Scholar
  72. Morris AJ, McGibbon RT, Bocarsly AB (2011) Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium- catalyzed CO2 reduction. ChemSusChem 4:191–196CrossRefGoogle Scholar
  73. Murata A, Hori Y (1991) Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull Chem Soc Jpn 64:123–127CrossRefGoogle Scholar
  74. Ogura K (2003) Electrochemical and selective conversion of CO2 to ethylene. Electrochemistry 71(8):676–680Google Scholar
  75. Ogura K, Yano H et al (2003) Catalytic reduction of CO2 to ethylene by electrolysis at a three-phase interface. J Electrochem Soc 150(9):D163–D168CrossRefGoogle Scholar
  76. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed Engl 44(18):2636–2639. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los AngelesGoogle Scholar
  77. Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498CrossRefGoogle Scholar
  78. Olah GA, Surya Prakash GK, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133:12881–12898CrossRefGoogle Scholar
  79. Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. ChemSusChem 1(5):385–391CrossRefGoogle Scholar
  80. Parkinson G (2006) Chem Eng Prog 102:7Google Scholar
  81. Perathoner S, Gangeri M et al (2007) Nanostructured electrocatalytic Pt-carbon materials for fuel cells and CO2 conversion. Kinetics Catal 48(6):877–883CrossRefGoogle Scholar
  82. Peters M et al (2011) Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain. ChemSusChem 4:1216–1240CrossRefGoogle Scholar
  83. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315CrossRefGoogle Scholar
  84. Pontzen F, Leibner W, Gronemann V, Rothaemelm M, Ahlers B (2011) CO2-based methanol and DME – efficient technologies for industrial scale production. Catal Today 171:242–250CrossRefGoogle Scholar
  85. Quadreilli EA, Centi G, Duplan J-L, Perathoner S (2011) Carbon dioxide recycling: emerging large scale technologies with industrial potential. ChemSusChem 4:1194–1215CrossRefGoogle Scholar
  86. Quadrelli EA et al (2011) ChemSusChem 4:1194–1215CrossRefGoogle Scholar
  87. Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51(3):325–440CrossRefGoogle Scholar
  88. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644CrossRefGoogle Scholar
  89. Saeki T, Hashimoto K, Kimura N, Omata K, Fujishima A (1995) Electrochemical reduction of CO2 with high-current density in a CO2 plus methanol medium. 2. CO formation promoted by tetrabutylammonium cation. J Electroanal Chem 390:77–82CrossRefGoogle Scholar
  90. Salehi-Khojin A, Jhong H-RM, Rosen BA, Zhu W, Ma S, Kenis PJA, Masel RI (2012) Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J Phys Chem C 117:1627–1632CrossRefGoogle Scholar
  91. Sanchez-Sanchez CM, Montiel V et al (2001) Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation. Pure Appl Chem 73(12):1917–1927CrossRefGoogle Scholar
  92. Schiller G, Henne R et al (1998) High performance electrodes for an advanced intermittently operated 10-kW alkaline water electrolyzer. Int J Hydrogen Energ 23(9):761–765CrossRefGoogle Scholar
  93. Schouten KJP, Qin Z, Gallent EP, Koper MTM (2012) Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc 134:9864–9867CrossRefGoogle Scholar
  94. Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon-dioxide to methanol at low overpotential. J Electroanal Chem 372:145–150CrossRefGoogle Scholar
  95. Shidong S, Huamin Z et al (2008) Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. Int J Hydrogen Energ 33:4955–4961CrossRefGoogle Scholar
  96. Song C, Pan W (2004) Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal Today 98:463–484CrossRefGoogle Scholar
  97. Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electrochemical conversion and utilization of CO2. Catal Sci Technol 2:19–28CrossRefGoogle Scholar
  98. Sridhar KR, Vaniman BT (1997) Oxygen production on Mars using solid oxide electrolysis. Solid State Ion 93:321CrossRefGoogle Scholar
  99. Tang W, Peterson AA, Varela AS, Jovanov ZP, Bech L, Durand WJ, Dahl S, Norskov JK, Chorkendorff I (2012) The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys 14:76–81CrossRefGoogle Scholar
  100. Tao M (2008) Inorganic photovoltaic solar cells: silicon and beyond, The electrochemical society’s interface. Winter 17(4):30Google Scholar
  101. Tao G, Sridhar KR, Chan CL (2004) Study of carbon dioxide electrolysis at electrode/electrolyte interface: Part II. Pt-YSZ cermet/YSZ interface. Solid State Ion 175:621CrossRefGoogle Scholar
  102. Ted Oyama S et al (2012) Dry reforming of methane has no future for hydrogen production: comparison with steam reforming at high pressure in standard and membrane reactors. Int J Hyd Energy 37(13):10444CrossRefGoogle Scholar
  103. Thorson MR, Siil SI, Kenis PJA (2013) Effect of cations on the electrochemical conversion of CO2 to CO. J Electrochem Soc 160:F69–F74CrossRefGoogle Scholar
  104. Todoroki M, Hara K et al (1995) Electrochemical reduction of high-pressure CO2 at Pb, Hg and in electrodes in an aqueous Khco3 solution. J Electroanal Chem 394(1–2):199–203CrossRefGoogle Scholar
  105. Tornow CE, Thorson MR, Ma S, Gewirth AA, Kenis PJA (2012) Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J Am Chem Soc 134:19520–19523CrossRefGoogle Scholar
  106. Udupa KS, Subraman G et al (1971) Electrolytic reduction of carbon dioxide to formic acid. Electrochim Acta 16(9):1593CrossRefGoogle Scholar
  107. Utgikar VT (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energ 31(7):939–944CrossRefGoogle Scholar
  108. Whitlow JE, Parish CF (2003) Operation, modeling and analysis of the reverse water gas shift process, AIP Conference Proceedings, 654:1116–1123Google Scholar
  109. Wittcoff HA, Reuben BG, Plotkin JS (2013) Industrial organic chemicals, 3rd edn. Wiley, HobokenGoogle Scholar
  110. Wu M et al (2007) Argonne National Lab report, ANL-ESD-07-10, Nov 2007Google Scholar
  111. Wu JJ, Risalvato FG, Ke FS, Pellechia PJ, Zhou XD (2012) Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode. J Electrochem Soc 159(7):F353–F359CrossRefGoogle Scholar
  112. Wu J, Risalvato FG, Sharma PP, Pellechia PJ, Ke F-S, Zhou X-D (2013) Electrochemical reduction of carbon dioxide II. Design, assembly, and performance of low temperature full electrochemical cells. J Electrochem Soc 160(9):F953–F957CrossRefGoogle Scholar
  113. Yamamoto T, Hirota K et al (1998) Electrochemical reduction of CO2 in microspores. Chem Lett 8:825–826CrossRefGoogle Scholar
  114. Yamamoto T, Tryk DA et al (2000) Electrochemical reduction of CO2 in the micropores of activated carbon fibers. J Electrochem Soc 147(9):3393–3400CrossRefGoogle Scholar
  115. Yamamoto T, Tryk DA et al (2002) Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell. Electrochim Acta 47(20):3327–3334CrossRefGoogle Scholar
  116. Yano J, Yamasaki S (2008) Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. J Appl Electrochem 38(12):1721–1726CrossRefGoogle Scholar
  117. Yano H, Shirai F, Nakayama M, Ogura K (2002a) Efficient electrochemical conversion of CO2 to CO, C2H4 and CH4 at a three-phase interface on a Cu net electrode in acidic solution. J Electroanal Chem 519(1-2):93–100CrossRefGoogle Scholar
  118. Yano H, Shirai F et al (2002b) Electrochemical reduction of CO2 at three-phase (gas/liquid/solid) and two-phase (liquid/solid) interfaces on Ag electrodes. J Electroanal Chem 533(1-2):113–118CrossRefGoogle Scholar
  119. Zaelke D et al (2011) Scientific synthesis of Calera carbon sequestration and carbonaceous by-product applications. Consensus findings of the scientific synthesis team, January 2011, University of California, Santa BarbaraGoogle Scholar
  120. Zhai Y, Guan S, Sridhar N, Agarwal AS (2015) Method and apparatus for the electrochemical reduction of carbon dioxide. US Patent App. 9,145,615, 2015Google Scholar

General Reading References

  1. Aresta M (ed) (2010) Carbon dioxide as a chemical feedstock. Wiley, New YorkGoogle Scholar
  2. Halmann MM, Steinberg M (1999) Greenhouse gas carbon dioxide mitigation science and technology. Lewis Publishers, Boca RatonGoogle Scholar
  3. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed Engl 44(18):2636–2639. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los AngelesGoogle Scholar
  4. Styrin P, Quadrelli EA, Armstrong K (2015) Carbon dioxide utilisation: closing the carbon cycle. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Arun S. Agarwal
    • 1
  • Edward Rode
    • 1
  • Narasi Sridhar
    • 1
  • Davion Hill
    • 2
  1. 1.Materials Program, Strategic Research and InnovationDNV GLDublinUSA
  2. 2.Energy & MaterialsDNV GLDublinUSA

Personalised recommendations