Wave Power - Climate Change Mitigation and Adaptation

  • Gregorio Iglesias
  • Javier Abanades
Living reference work entry


Wave energy has a great potential in many coastal areas thanks to a number of advantages: the abundant resource, with the highest energy density of all renewables, leading to higher availability factors than, e.g., wind or solar energy, and the low environmental and particularly visual impact, not least in the case of offshore floating wave energy converters (WECs). In addition, a novel advantage will be investigated in this work: the possibility of a synergetic use for carbon-free energy production and coastal protection. All in all, these advantages make wave energy a promising alternative to conventional energy sources. In this chapter the fundamentals of the wave resource and its characterization are outlined. The technologies for wave energy conversion are classified according to three criteria, the most representative WECs are presented, and the technological challenges discussed. Next, the environmental impacts of wave energy extraction are analyzed, with a focus on the reduction of coastal erosion.

If there are two main strategies to cope with climate change, mitigation and adaptation, wave farms participate on both. Indeed, wave energy contributes to mitigating climate change by two means, one acting on the cause, the other on the effect: (i) by bringing down carbon emissions (cause) through its production of renewable energy and (ii) by reducing coastal erosion (effect). Given that one of the causes of climate change is precisely coastal erosion – through sea-level rise and increased storminess – the contribution of wave farms to its mitigation is indeed welcome. As for adaptation, wave farms – which typically consist of floating WECs – adapt naturally to sea-level rise; this is a major advantage relative to conventional coastal defense schemes, based on fixed structures (seawalls, detached breakwaters, groynes, etc.)


Climate change Wave power Wave energy Wave energy converter Wave energy conversion Wave resource Wave farm Wave propagation WEC array Carbon emission Coastal erosion Coastal flooding Sea-level rise Increased storminess Coastal structure Breakwater Seawall Beach morphology Beach erosion Sediment transport Levelized cost of energy (LCOE) Externalities Offshore wind Greenhouse gas Numerical modeling Field data Wave buoys Sea state Wave spectrum Oscillating water column (OWC) Oscillating body Wave-activated body Overtopping WaveCat Wave Dragon Seawave Slot-Cone Generator WaveStar CETO Seadog Waveberg Wave-powered diaphragm pump Pelamis Anaconda PowerBuoy Aegir Dynamo 


  1. Abanades J, Greaves D, Iglesias G (2014a) Coastal defence through wave farms. Coast Eng 91:299–307CrossRefGoogle Scholar
  2. Abanades J, Greaves D, Iglesias G (2014b) Wave farm impact on the beach profile: a case study. Coast Eng 86:36–44CrossRefGoogle Scholar
  3. Abanades J, Greaves D, Iglesias G (2015a) Wave farm impact on beach modal state. Mar Geol 361:126–135CrossRefGoogle Scholar
  4. Abanades J, Greaves D, Iglesias G (2015b) Coastal defence using wave farms: the role of farm-to-coast distance. Renew Energy 75:572–582CrossRefGoogle Scholar
  5. Arena F, Fiamma V, Laface V, Malara G, Romolo A, Viviano A, Sannino G, Carillo A (2013) Installing U-OWC devices along Italian coasts. In: ASME 2013 32nd international conference on ocean, offshore and arctic engineering. American Society of Mechanical Engineers, pp V008T009A061-V008T009A061Google Scholar
  6. Astariz S, Iglesias G (2014) Wave energy vs. other energy sources: a reassessment of the economics. Int J Green Energy, (in press)Google Scholar
  7. Astariz S, Iglesias G (2015) The economics of wave energy: a review. Renew Sustain Energy Rev 45:397–408CrossRefGoogle Scholar
  8. Astariz S, Perez-Collazo C, Abanades J, Iglesias G (2015a) Towards the optimal design of a co-located wind-wave farm. Energy 84:15–24CrossRefGoogle Scholar
  9. Astariz S, Perez-Collazo C, Abanades J, Iglesias G (2015b) Co-located wind-wave farm synergies (operation & maintenance): a case study. Energy Convers Manag 91:63–75CrossRefGoogle Scholar
  10. Astariz S, Perez-Collazo C, Abanades J, Iglesias G (2015c) Co-located wave-wind farms: economic assessment as a function of layout. Renew Energy 83:837Google Scholar
  11. Austin M, Scott T, Brown J, Brown J, MacMahan J, Masselink G, Russell P (2010) Temporal observations of rip current circulation on a macro-tidal beach. Cont Shelf Res 30(9):1149–1165CrossRefGoogle Scholar
  12. AWS Ocean Energy (2015) AWS Ocean Energy web pageGoogle Scholar
  13. Bahaj AS (2011) Generating electricity from the oceans. Renew Sustain Energy Rev 15(7):3399–3416CrossRefMathSciNetGoogle Scholar
  14. Baldock TE, Alsina JA, Caceres I, Vicinanza D, Contestabile P, Power H, Sanchez-Arcilla A (2011) Large-scale experiments on beach profile evolution and surf and swash zone sediment transport induced by long waves, wave groups and random waves. Coast Eng 58(2):214–227CrossRefGoogle Scholar
  15. Berkhoff J (1974) Computation of combined refraction-diffraction. Delft Hydraulics Laboratory, DelftGoogle Scholar
  16. Bernhoff H, Sjöstedt E, Leijon M (2006) Wave energy resources in sheltered sea areas: a case study of the Baltic Sea. Renew Energy 31(13):2164–2170CrossRefGoogle Scholar
  17. Cameron L, Doherty R, Henry A, Doherty K, Van’t Hoff J, Kaye D, Naylor D, Bourdier S, Whittaker T (2010) Design of the next generation of the Oyster wave energy converter. In: 3rd international conference on ocean energyGoogle Scholar
  18. Carballo R, Iglesias G (2012) A methodology to determine the power performance of wave energy converters at a particular coastal location. Energy Convers Manag 61:8–18CrossRefGoogle Scholar
  19. Carballo R, Iglesias G (2013) Wave farm impact based on realistic wave-WEC interaction. Energy 51:216–229CrossRefGoogle Scholar
  20. Carballo R, Sánchez M, Ramos V, Fraguela J, Iglesias G (2015) The intra-annual variability in the performance of wave energy converters: a comparative study in N Galicia (Spain). Energy 82:138CrossRefGoogle Scholar
  21. Castelle B, Marieu V, Bujan S, Splinter KD, Robinet A, Sénéchal N, Ferreira S (2015) Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: beach and dune erosion and megacusp embayments. Geomorphology 238:135–148CrossRefGoogle Scholar
  22. Chaplin J, Farley F, Rainey R (2007) Power conversion in the ANACONDA WEC. In: Proceedings of the 22nd international workshop on water waves and floating bodiesGoogle Scholar
  23. Chini N, Stansby P, Leake J, Wolf J, Roberts-Jones J, Lowe J (2010) The impact of sea level rise and climate change on inshore wave climate: a case study for East Anglia (UK). Coast Eng 57(11):973–984CrossRefGoogle Scholar
  24. CISCAG (2011) Shoreline management plan Cornwall and Isles of Scilly Coastal Advisory Group. AvailableGoogle Scholar
  25. Clément A, McCullen P, Falcão AFdO, Fiorentino A, Gardner F, Hammarlund K, Lemonis G, Lewis T, Nielsen K, Petroncini S, Pontes MT, Schild P, Sjöström B, Sørensen HC, Thorpe TW (2002) Wave energy in Europe: current status and perspectives. Renew Sustain Energy Rev 6(5):405–431CrossRefGoogle Scholar
  26. de Sousa Prado MG, Gardner F, Damen M, Polinder H (2006) Modelling and test results of the Archimedes wave swing. Proc Inst Mech Eng Part A J Power and Energy 220(8):855–868CrossRefGoogle Scholar
  27. Defne Z, Haas KA, Fritz HM (2009) Wave power potential along the Atlantic coast of the southeastern USA. Renew Energy 34(10):2197–2205CrossRefGoogle Scholar
  28. DEFRA (2015) Central government funding for flood and coastal erosion risk management in England. AvailableGoogle Scholar
  29. Drew B, Plummer AR, Sahinkaya MN (2009) A review of wave energy converter technology. J Power Energy 223(8):887–902CrossRefGoogle Scholar
  30. Egbert GD, Bennett AF, Foreman MG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res Oceans (1978–2012) 99(C12):24821–24852CrossRefGoogle Scholar
  31. EU-OEA (2010) Oceans of energy. European ocean energy roadmap 2010–2050. European Ocean Energy Association, Bietlot, 36 pp. Available at:
  32. European Commission (2007) A European Strategic Energy Technology Plan (SET-Plan)–towards a low-carbon future. 723Google Scholar
  33. EUROSION (2004) EUROSION. [Online]. Available at:
  34. EVE (2014) Ente Vasco de la EnergiaGoogle Scholar
  35. EWEA, ECN, 3E, SOW (2012) Delivering offshore electricty to the EU. Spatial planning of offshore renewable energies and electricity grid infrastrutures in an integrated EU maritime policy. 80 pp. Available at:
  36. Falcão AdO (2000) The shoreline OWC wave power plant at the Azores. In: Proceedings of the fourth European wave energy conference, Aalborg, pp 42–48Google Scholar
  37. Falcão AFO (2010) Wave energy utilization: a review of the technologies. Renew Sustain Energy Rev 14(3):899–918CrossRefGoogle Scholar
  38. Falnes J (2007) A review of wave-energy extraction. Mar Struct 20(4):185–201CrossRefGoogle Scholar
  39. Fernandez H, Iglesias G, Carballo R, Castro A, Fraguela JA, Taveira-Pinto F, Sanchez M (2012) The new wave energy converter WaveCat: concept and laboratory tests. Mar Struct 29(1):58–70CrossRefGoogle Scholar
  40. Folley M, Whittaker T (2009) Analysis of the nearshore wave energy resource. Renew Energy 34(7):1709–1715CrossRefGoogle Scholar
  41. Folley M, Babarit A, Child B, Forehand D, O’Boyle L, Silverthorne K, Spinneken J, Stratigaki V, Troch P (2012) A review of numerical modeling of wave energy converter arrays. In: International conference on ocean, offshore and arctic engineering (OMAE 2012). ASME, pp 1–11Google Scholar
  42. Galappatti G, Vreugdenhil C (1985) A depth-integrated model for suspended sediment transport. J Hydraul Res 23(4):359–377CrossRefGoogle Scholar
  43. Gonçalves M, Martinho P, Guedes Soares C (2014) Wave energy conditions in the western French coast. Renew Energy 62:155–163CrossRefGoogle Scholar
  44. Gonzalez-Santamaria R, Zou Q-P, Pan S (2013) Impacts of a wave farm on waves, currents and coastal morphology in south west England. Estuar Coasts 38(1):1–14Google Scholar
  45. Haigh ID, Wadey MP, Gallop SL, Loehr H, Nicholls RJ, Horsburgh K, Brown JM, Bradshaw E (2015) A user-friendly database of coastal flooding in the United Kingdom from 1915–2014. Sci Data 2:150021CrossRefGoogle Scholar
  46. Hasselmann K (1971) On the mass and momentum transfer between short gravity waves and larger-scale motions. J Fluid Mech 50(01):189–205CrossRefMATHGoogle Scholar
  47. Henderson R (2006) Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renew Energy 31(2):271–283CrossRefGoogle Scholar
  48. Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. Holthuijsen L, Booij N, Herbers T (1989) A prediction model for stationary, short-crested waves in shallow water with ambient currents. Coast Eng 13(1):23–54CrossRefGoogle Scholar
  50. Huthnance J, Mieszkowska N (2010) Charting progress 2 feeder report: ocean processes. The Scottish Govt., Edinburgh, (UK)Google Scholar
  51. Iglesias G, Abanades J (2014) Characterisation of the wave resource: the crucial points. In: RENEW 1st international conference on renewable energies offshore, LisbonGoogle Scholar
  52. Iglesias G, Carballo R (2009) Wave energy potential along the Death Coast (Spain). Energy 34(11):1963–1975CrossRefGoogle Scholar
  53. Iglesias G, Carballo R (2010a) Wave energy and nearshore hot spots: the case of the SE Bay of Biscay. Renew Energy 35(11):2490–2500CrossRefGoogle Scholar
  54. Iglesias G, Carballo R (2010b) Wave power for la isla bonita. Energy 35(12):5013–5021CrossRefGoogle Scholar
  55. Iglesias G, Carballo R (2010c) Offshore and inshore wave energy assessment: Asturias (N Spain). Energy 35(5):1964–1972CrossRefGoogle Scholar
  56. Iglesias G, Carballo R (2011) Choosing the site for the first wave farm in a region: a case study in the Galician Southwest (Spain). Energy 36(9):5525–5531CrossRefGoogle Scholar
  57. Iglesias G, Carballo R (2014) Wave farm impact: the role of farm-to-coast distance. Renew Energy 69:375–385CrossRefGoogle Scholar
  58. Iglesias G, Carballo R, Castro A, Fraga B (2008) Development and design of the WaveCat™ energy converter. Coast Eng:3970–3982Google Scholar
  59. Iglesias G, López M, Carballo R, Castro A, Fraguela JA, Frigaard P (2009) Wave energy potential in Galicia (NW Spain). Renew Energy 34(11):2323–2333CrossRefGoogle Scholar
  60. Iglesias G, Alvarez M, García P (2010) Wave energy converters. In: Encyclopedia of life support systems (EOLSS). UNESCO, ParisGoogle Scholar
  61. Jeffrey H, Sedgwick J (2011) ORECCA. European offshore renewable energy roadmap. 201 pp. Available at:
  62. Johnson R (1997) A modern introduction to the mathematical theory of water waves, vol 19. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  63. Kendon M, McCarthy M (2015) The UK’s wet and stormy winter of 2013/2014. Weather 70(2):40–47CrossRefGoogle Scholar
  64. Kofoed JP, Frigaard P, Friis-Madsen E, Sørensen HC (2006) Prototype testing of the wave energy converter. Renew Energy 31(2):181–189CrossRefGoogle Scholar
  65. Kramer M, Marquis L, Frigaard P (2011) Performance evaluation of the wavestar prototype. In: The 9th European wave and tidal energy conference: EWTEC 2011Google Scholar
  66. Lenee-Bluhm P, Paasch R, Özkan-Haller HT (2011) Characterizing the wave energy resource of the US Pacific Northwest. Renew Energy 36(8):2106–2119CrossRefGoogle Scholar
  67. Longuet-Higgins MS, Stewart R (1961) The changes in amplitude of short gravity waves on steady non-uniform currents. J Fluid Mech 10(04):529–549CrossRefMathSciNetMATHGoogle Scholar
  68. López I, Iglesias G (2014) Efficiency of OWC wave energy converters: a virtual laboratory. Appl Ocean Res 44:63–70CrossRefGoogle Scholar
  69. López I, Pereiras B, Castro F, Iglesias G (2014) Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model. Appl Energy 127:105–114CrossRefGoogle Scholar
  70. Mann LD (2011) Application of ocean observations & analysis: the CETO wave energy project. In: Operational oceanography in the 21st century. Springer, Heidelberg, pp 721–729Google Scholar
  71. Marquis L, Kramer M, Frigaard P (2010) First power production figures from the wave star roshage wave energy converter. In: Proceedings of the international conference on ocean energy (ICOE)Google Scholar
  72. Masselink G, Evans D, Hughes MG, Russell P (2005) Suspended sediment transport in the swash zone of a dissipative beach. Mar Geol 216(3):169–189CrossRefGoogle Scholar
  73. McCormick ME (1981) Ocean wave energy conversion. Wiley-Interscience, New YorkGoogle Scholar
  74. Mehlum E (1986) Tapchan. In: Hydrodynamics of ocean wave-energy utilization. Springer, Heidelberg, pp 51–55Google Scholar
  75. Mendoza E, Silva R, Zanuttigh B, Angelelli E, Lykke Andersen T, Martinelli L, Nørgaard JQH, Ruol P (2014) Beach response to wave energy converter farms acting as coastal defence. Coast Eng 87:97–111CrossRefGoogle Scholar
  76. Millar DL, Smith HCM, Reeve DE (2007) Modelling analysis of the sensitivity of shoreline change to a wave farm. Ocean Eng 34(5–6):884–901CrossRefGoogle Scholar
  77. Moccia J, Arapogianni A, Wilkes J, Kjaer C, Gruet R (2011) Pure power. Wind energy targets for 2020 and 2030. European Wind Energy Association, Brussels, 97 pp. Available at:
  78. Ocean Power Technologies Inc (2014) OPT web pageGoogle Scholar
  79. Oceans U. A. o. t. (2011) Human settlements on the coast [Online]. Available at: Accessed 21 May 2015
  80. Palha A, Mendes L, Fortes CJ, Brito-Melo A, Sarmento A (2010) The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices. Renew Energy 35(1):62–77CrossRefGoogle Scholar
  81. Pelamis Wave Power (2014) Pelamis wave power web pageGoogle Scholar
  82. Perez Collazo C, Astariz S, Abanades J, Greaves D, Iglesias G (2014) Co-located wave and offshore wind farms: a preliminary case study of an hybrid array. In: International conference in coastal engineering (ICCE)Google Scholar
  83. Pérez-Collazo C, Greaves D, Iglesias G (2015) A review of combined wave and offshore wind energy. Renew Sustain Energy Rev 42:141–153CrossRefGoogle Scholar
  84. Photobrooks (2014) Photobrooks web pageGoogle Scholar
  85. Pontes M, Athanassoulis G, Barstow S, Bertotti L, Cavaleri L, Holmes B, Mollison D, Pires H (1998) The European wave energy resource. In: 3rd European wave energy conference, PatrasGoogle Scholar
  86. Pugh D (2004) Changing sea levels: effects of tides, weather and climate. Cambridge University Press, CambridgeGoogle Scholar
  87. Reeve DE, Chen Y, Pan S, Magar V, Simmonds DJ, Zacharioudaki A (2011) An investigation of the impacts of climate change on wave energy generation: the Wave Hub, Cornwall, UK. Renew Energy 36(9):2404–2413CrossRefGoogle Scholar
  88. Roelvink J, Reniers A, Van Dongeren A, Van Thiel de Vries J, Lescinski J, McCall R (2006) XBeach model description and manual. In: UNESCO-IHE Institute for Water Education. (Accessed: Roelvink J, Reniers A, Van Dongeren A, Van Thiel de Vries J, Lescinski J, McCall R)Google Scholar
  89. Roelvink D, Reniers A, van Dongeren A, van Thiel de Vries J, McCall R, Lescinski J (2009) Modelling storm impacts on beaches, dunes and barrier islands. Coast Eng 56(11–12):1133–1152CrossRefGoogle Scholar
  90. Rusu L, Guedes Soares C (2012) Wave energy assessments in the Azores islands. Renew Energy 45:183–196CrossRefGoogle Scholar
  91. Rusu E, Guedes Soares C (2013) Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore. Renew Energy 58:34–49CrossRefGoogle Scholar
  92. Scott T, Masselink G, Russell P (2011) Morphodynamic characteristics and classification of beaches in England and Wales. Mar Geol 286(1–4):1–20CrossRefGoogle Scholar
  93. Senechal N, Coco G, Castelle B, Marieu V (2015) Storm impact on the seasonal shoreline dynamics of a meso- to macrotidal open sandy beach (Biscarrosse, France). Geomorphology 228:448–461CrossRefGoogle Scholar
  94. Sibley A, Cox D, Titley H (2015) Coastal flooding in England and Wales from Atlantic and North Sea storms during the 2013/2014 winter. Weather 70(2):62–70CrossRefGoogle Scholar
  95. Slingo J, Belcher S, Scaife A, McCarthy M, Saulter A, McBeath K, Jenkins A, Huntingford C, Marsh T, Hannaford J (2014) The recent storms and floods in the Met. Office, Exeter (UK)Google Scholar
  96. Smith HCM, Pearce C, Millar DL (2012) Further analysis of change in nearshore wave climate due to an offshore wave farm: an enhanced case study for the Wave Hub site. Renew Energy 40(1):51–64CrossRefGoogle Scholar
  97. Spencer T, Brooks SM, Evans BR, Tempest JA, Möller I (2015) Southern North Sea storm surge event of 5 December 2013: water levels, waves and coastal impacts. Earth Sci Rev 146:120–145CrossRefGoogle Scholar
  98. Stopa JE, Cheung KF, Chen Y-L (2011) Assessment of wave energy resources in Hawaii. Renew Energy 36(2):554–567CrossRefGoogle Scholar
  99. Stoutenburg ED, Jenkins N, Jacobson MZ (2010) Power output variations of co-located offshore wind turbines and wave energy converters in California. Renew Energy 35(12):2781–2791CrossRefGoogle Scholar
  100. Tedd J, Kofoed JP (2009) Measurements of overtopping flow time series on the Wave Dragon, wave energy converter. Renew Energy 34(3):711–717CrossRefGoogle Scholar
  101. Thorpe TW (1999) A brief review of wave energy. Harwell Laboratory, Energy Technology Support Unit, Oxford (UK)Google Scholar
  102. Thorpe T (2001) The wave energy programme in the UK and the European wave energy networkGoogle Scholar
  103. Tolman HL (2002) User manual and system documentation of WAVEWATCH-III version 2.22Google Scholar
  104. Torre-Enciso Y, Ortubia I, López de Aguileta L, Marqués J (2009) Mutriku wave power plant: from the thinking out to the reality. In: Proceedings of the 8th European wave and tidal energy conference, pp 319–329Google Scholar
  105. Valério D, Beirão P, da Costa JS (2007) Optimisation of wave energy extraction with the Archimedes Wave Swing. Ocean Eng 34(17):2330–2344CrossRefGoogle Scholar
  106. Van Thiel de Vries J (2009) Dune erosion during storm surges. PhD thesis, Delft University of TechnologyGoogle Scholar
  107. Veigas M, López M, Iglesias G (2014) Assessing the optimal location for a shoreline wave energy converter. Appl Energy 132:404–411CrossRefGoogle Scholar
  108. Vicinanza D, Frigaard P (2008) Wave pressure acting on a seawave slot-cone generator. Coast Eng 55(6):553–568CrossRefGoogle Scholar
  109. Vicinanza D, Margheritini L, Contestabile P, Kofoed JP, Frigaard P (2008) Seawave slot-cone generator: an innovative caisson breakwaters for energy production. In: The international conference on coastal engineering, pp 3694–3705Google Scholar
  110. Vicinanza D, Contestabile P, Ferrante V (2013) Wave energy potential in the north-west of Sardinia (Italy). Renew Energy 50:506–521CrossRefGoogle Scholar
  111. Vidal C, Méndez Fernando J, Díaz G, Legaz R (2007) Impact of Santoña WEC installation on the littoral processes. In: Proceedings of the 7th European wave and tidal energy conference, PortoGoogle Scholar
  112. Wadey M, Haigh I, Brown J (2014) A century of sea level data and the UK’s 2013/14 storm surges: an assessment of extremes and clustering using the Newlyn tide gauge record. Ocean Sci Discuss 11(4):1995–2028CrossRefGoogle Scholar
  113. Wave Dragon AS (2005) Wave Dragon web pageGoogle Scholar
  114. Zanuttigh B, Angelelli E (2013) Experimental investigation of floating wave energy converters for coastal protection purpose. Coast Eng 80:148–159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Marine Science and EngineeringUniversity of PlymouthPlymouthUK

Personalised recommendations