Hereditary Spastic Paraplegia

  • Harold Chen
Living reference work entry


The hereditary spastic paraplegia (HSP) are inherited disorders in which the primary neurological syndrome is bilateral, approximately symmetrical, lower-extremity spastic weakness, often accompanied by urinary urgency (Fink 2003; Figs. 1 and 2)


Hereditary Spastic Paraplegia Metachromatic Leukodystrophy Biotinidase Deficiency Alexander Disease Cerebrotendinous Xanthomatosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abou Jamra, R., Philippe, O., Raas-Rothschild, A., et al. (2011). Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. American Journal of Human Genetics, 88, 788–795.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Arnoldi, A., Crimella, C., Tenderini, E., et al. (2012). Clinical phenotype variability in patients with hereditary spastic paraplegia type 5 associated with CYP7B1 mutations. Clinical Genetics, 81, 150–157.CrossRefPubMedGoogle Scholar
  3. Beetz, C., Johnson, A., Schuh, A. L., et al. (2013). Inhibition of TFG function causes hereditary axon degeneration by impairing endoplasmic reticulum structure. Proceedings of the National Academy of Sciences, 110, 5091–5096.CrossRefGoogle Scholar
  4. Behan, W., & Maia, M. (1974). Strumpell’s familial spastic paraplegia: genetics and neuropathology. Journal of Neurology, Neurosurgery, and Psychiatry, 37, 8–20.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Boukhris, A., Feki, I., Elleuch, N., et al. (2010). A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum. Neurogenetics, 11, 441–448.CrossRefPubMedGoogle Scholar
  6. Boukhris, A., Schule, R., Loureiro, J. L., et al. (2013). Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. American Journal of Human Genetics, 93, 118–123.PubMedCentralCrossRefPubMedGoogle Scholar
  7. De Bot, S. T., van de Warrenburg, B. P. C., Kremer, H. P. H., et al. (2010). Child neurology: hereditary spastic paraplegia in children. Neurology, 75, e75–e79.CrossRefPubMedGoogle Scholar
  8. de Bot, S. T., Vermeer, S., Buijsman, W., et al. (2013). Pure adult-onset spastic paraplegia caused by a novel mutation in the KIAA0196 (SPG8) gene. Journal of Neurology, 260, 1765–1769.CrossRefPubMedGoogle Scholar
  9. DeMichele, G., DeFusco, M., Cavalcant, I. F., et al. (1998). A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3. The American Journal of Human Genetics, 63, 135–139.CrossRefGoogle Scholar
  10. Dick, K. J., Eckhardt, M., Paisan-Ruiz, C., et al. (2010). Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Human Mutation, 31, E1251–E1260.CrossRefPubMedGoogle Scholar
  11. Erlich, Y., Edvardson, S., Hodges, E., et al. (2011). Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Research, 21, 658–664.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Esteves, T., Durr, A., Mundwiller, E., et al. (2014). Loss of association of REEP2 with membranes leads to hereditary spastic paraplegia. American Journal of Human Genetics, 94, 268–277.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Fink, J. K. (1997). Advances in hereditary spastic paraplegia. Current Opinion in Neurology, 10, 313–318.CrossRefPubMedGoogle Scholar
  14. Fink, J. K. (2002). Hereditary spastic paraplegia. In D. Rimoin, R. Pyeritz, J. Connor, & B. Korf (Eds.), Emery & Rimoin’s principles and practice of medical genetics (4th ed., pp. 3124–3145). London: Harcourt Publishers.Google Scholar
  15. Fink, J. K. (2003). Advances in the hereditary spastic paraplegias. Experimental Neurology, 184, S106–S110.CrossRefPubMedGoogle Scholar
  16. Fink, J. K. (2006). Hereditary spastic paraplegia. Current Neurology and Neuroscience Reports, 6, 65–76.CrossRefPubMedGoogle Scholar
  17. Fink, J. K. (2013). Hereditary spastic paraplegia: clinic-pathologic features and emerging molecular mechanisms. Acta Neuropathologica, 126, 304–328.CrossRefGoogle Scholar
  18. Fink, J. K., & Hedera, P. (1999). Hereditary spastic paraplegia: genetic heterogeneity and genotype-phenotype correlation. Seminars in Neurology, 19, 301–310.CrossRefPubMedGoogle Scholar
  19. Finsterer, J., Löscher, W., Quasthoff, S., et al. (2012). Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. Journal of Neurologic Science, 318, 1–18.CrossRefGoogle Scholar
  20. Goizet, C., Boukhris, A., Maltete, D., et al. (2009). SPG15 is the second most common cause of hereditary spastic paraplegia with thin corpus callosum. Neurology, 73, 1111–1119.CrossRefPubMedGoogle Scholar
  21. Harding, A. E. (1983). Classification of the hereditary ataxias and paraplegias. Lancet, 1, 1151–1155.CrossRefPubMedGoogle Scholar
  22. Kruer, M. C., Paisan-Ruiz, C., Boddaert, N., et al. (2010). Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Annals of Neurology, 68, 611–618.CrossRefPubMedGoogle Scholar
  23. Lin, P., Li, J., Liu, Q., Mao, F., et al. (2008). A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42). American Journal of Human Genetics, 83, 752–759.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Martin, E., Schule, R., Smets, K., et al. (2013). Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. American Journal of Human Genetics, 92, 238–244.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Montenegro, G., Rebelo, A. P., Connell, J., et al. (2012). Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. The Journal of Clinical Investigation, 122, 538–544.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Moreno-De-Luca, A., Helmers, S. L., Mao, H., et al. (2011). Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. Journal of Medical Genetics, 48, 141–144.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Novarino, G., Fenstermaker, A. G., Zaki, M. S., et al. (2014). Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science, 343, 506–511.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Orthmann-Murphy, J. L., Salsano, E., Abrams, C. K., et al. (2009). Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain, 132(pt 2), 426–438.PubMedCentralPubMedGoogle Scholar
  29. Oz-Levi, D., Ben-Zeev, B., Ruzzo, E. K., et al. (2012). Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. American Journal of Human Genetics, 91, 1065–1072.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Rainier, S., Bui, M., Mark, E., et al. (2008). Neuropathy target esterase gene mutations cause motor neuron disease. American Journal of Human Genetics, 82, 780–785.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Silver, J. R. (1966). Familial spastic paraplegia with amyotrophy of the hands. Journal of Neurology, Neurosurgery, and Psychiatry, 29, 135–144.PubMedCentralCrossRefGoogle Scholar
  32. Simpson, M. A., Cross, H., Proukakis, C., et al. (2003). Maspardin is mutated in Mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. American Journal of Human Genetics, 73, 1147–1156.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Slabicki, M., Theis, M., Krastev, D. B., et al. (2010). A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biology, 8, e1000408.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Shimazaki, H., Takiyama, Y., Ishiura, H., Japan Spastic Paraplegia Research Consortium (JASPAC), et al. (2012). A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55). Journal of Medical Genetics, 49, 777–784.CrossRefPubMedGoogle Scholar
  35. Spiegel, R., Mandel, H., Saada, A., et al. (2014). Delineation of C12orf65-related phenotypes: a genotype-phenotype relationship. European Journal of Human Genetics, 22, 1019–1025.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Tesson, C., Nawara, M., Salih, M. A. M., et al. (2012). Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. American Journal of Human Genetics, 91, 1051–1064.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Verkerk, A. J. M. H., Schot, R., Dumee, B., et al. (2009). Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. American Journal of Human Genetics, 85, 40–52.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Zivony-Elboum, Y., Westbroek, W., Kfir, N., et al. (2012). A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. Journal of Medical Genetics, 49, 462–472.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Medical GeneticsShriners Hospitals for ChildrenShreveportUSA
  2. 2.Perinatal and Clinical Genetics, Department of PediatricsLSU Health Sciences CenterShreveportUSA

Personalised recommendations