Advertisement

Fundamentals of Remote Sensing Imaging and Preliminary Analysis

  • Siamak Khorram
  • Stacy A. C. Nelson
  • Cynthia F. van der Wiele
  • Halil Cakir
Living reference work entry

Abstract

Airborne and satellite digital image acquisition, preprocessing, and data reduction techniques as applied to remotely sensed data for the purpose of extracting useful Earth resources information are discussed in this chapter. The image processing and postprocessing tools are described in the next chapter. The concepts discussed in this chapter include:
  • Image acquisition considerations including currently available remotely sensed data

  • Image characteristics in terms of spatial, spectral, radiometric, and temporal resolutions

  • Preprocessing techniques such as geometric distortion removals, atmospheric correction algorithms, image registration, enhancement, masking, and data transformations

  • Data reduction, fusion, and integration techniques

  • International policies governing acquisition and distribution of remotely sensed data

Keywords

Remote sensing data acquisition Data fusion Digital image processing Digital image data integration Electromagnetic spectrum Hyperspectral imaging Light detection and ranging (LiDAR) Multispectral imaging Radio detection and ranging (RADAR) Radiometric resolution Satellite remote sensing Spatial resolution Spectral resolution Temporal resolution Geospatial data integration 

References

  1. T.E. Avery, G.L.L. Berlin, Fundamentals of Remote Sensing and Air Photo Interpretation, 5th edn. (Prentice Hall, New York, 1992). 472 pGoogle Scholar
  2. E.J. Beh, Simple correspondence analysis: a bibliographic review. Int. Stat. Rev. 72(2), 257–284 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. J.P. Benzécri, Correspondence Analysis Handbook (Marcel Dekker, New York, 1992)MATHGoogle Scholar
  4. H.I. Cakir, S. Khorram, X.L. Dai, P. de Fraipont, Merging SPOT XS and SAR imagery using the wavelet transform method to improve classification accuracy, in Geoscience and Remote Sensing Symposium, IGARSS’99 Proceedings, IEEE International, Hamburg 1, 71–73 (1999)Google Scholar
  5. H.I. Cakir, S. Khorram, S.A. Nelson, Correspondence analysis for detecting land cover change. Remote Sens. Environ. 102, 306–317 (2006)CrossRefGoogle Scholar
  6. J.R. Carr, K. Matanawi, Correspondence analysis for principal components transformation of multispectral and hyperspectral digital images. Photogramm. Eng. Remote Sens. 65(8), 909–914 (1999)Google Scholar
  7. X. Dai, S. Khorram, Quantification of the impact of misregistration on digital change detection accuracy, in Proceedings of IEEE/IGARSS’97 International Geoscience and Remote Sensing Symposium, Singapore, 1997Google Scholar
  8. X. Dai, S. Khorram, Data fusion using artificial neural networks: a case study on multi-temporal change analysis. Comput. Environ. Urban Syst. 23, 19–31 (1999)CrossRefGoogle Scholar
  9. B. de Montluc, The new international political and strategic context for space policies. Space Policy 25, 20–28 (2009)CrossRefGoogle Scholar
  10. J.P. Djamdji, A. Bijaoui, R. Manieri, Geometrical registration of images: the multiresolution approach. Photogramm. Eng. Remote Sens. 59, 645–653 (1993)Google Scholar
  11. J.R. Dobson, E.A. Bright, R.L. Ferguson, D.W. Field, L.L. Wood, K.D. Haddad, H. Iredale, J.R. Jensen, V. Klemas, R.J. Orth, J.P. Thomas, NOAA Coastal Change Analysis Program (C-CAP): Guidance for Regional Implementation (National Oceanic & Atmospheric Administration, NMFS, Washington, DC, 1995). 92 pGoogle Scholar
  12. B.C. Forster, Derivation of atmospheric correction procedures for Landsat MSS with particular reference to urban data. Int. J. Remote Sens. 5, 799–817 (1984)CrossRefGoogle Scholar
  13. J.I. Gabrynowicz, The promise and problems of the Land Remote Sensing Policy Act of 1992. Space Policy 9, 319–328 (1993)CrossRefGoogle Scholar
  14. H.G. Gauch Jr., Multivariate analysis in community structure (Cambridge University Press, Cambridge, 1982)CrossRefGoogle Scholar
  15. M.J. Greenacre, Theory and Application of Correspondence Analysis (Academic, London, 1984)MATHGoogle Scholar
  16. A. Grossmann, J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723–736 (1984)MathSciNetCrossRefMATHGoogle Scholar
  17. R. Harris, Current policy issues in remote sensing: report by the International Policy Advisory Committee of ISPRS. Space Policy 19, 293–296 (2003)CrossRefGoogle Scholar
  18. M. Herold, S. Guenther, K.C. Clarke, Mapping urban areas in the Santa Barbara south coast using IKONOS and eCognition. eCognition Appl. Note. Munchen: Definiens ImgbH 4(1), 20 p (2003)Google Scholar
  19. H.O. Hirschfield, A connection between correlation and contingency, in Mathematical Proceedings of the Cambridge Philosophical Society, Oxford 31, 520–4 (1935)Google Scholar
  20. G. Horgan, Wavelets for SAR image smoothing. Photogramm. Eng. Remote Sens. 64(12), 1171–1177 (1998)Google Scholar
  21. B. Jähne, Digital Image Processing (Springer, New York, 1991), pp. 219–230CrossRefGoogle Scholar
  22. R. Jakhu, International law governing the acquisition and dissemination of satellite imagery, in Commercial Satellite Imagery and United Nations Peacekeeping: A View from Above (Ashgate, Burlington, 2004). 259 pGoogle Scholar
  23. J.R. Jensen, Introductory Digital Image Processing, 3rd edn. (Pearson Prentice Hall, Upper Saddle River, 2005). 316 pGoogle Scholar
  24. J.F. Keeley, R.N. Huebert, Commercial Satellite Imagery and United Nations Peacekeeping: A View from Above (Ashgate, Burlington, 2004)Google Scholar
  25. S. Khorram, Coastwatch – water quality mapping of the entire San Francisco Bay and delta from Landsat multispectral scanner data, in Space Sciences Laboratory, ed. by: R.N. Colwell, PI, Series 23, Issue 6 (University of California, Berkeley, 1982), 34 pGoogle Scholar
  26. S. Khorram, F. Koch, C.F. van der Wiele, S.A.C. Nelson, Remote Sensing (Springer, New York, 2012). doi:10.1007/9781-4614-3103-9. 134 p. ISBN 978-1- 4614-3102-2CrossRefGoogle Scholar
  27. S. Khorram, C.F. van der Wiele, F.H. Koch, S.A.C. Nelson, M.D. Potts, Principles of Applied Remote Sensing (Springer, New York, 2016). 307 p. ISBN 978-3-319-22559-3CrossRefGoogle Scholar
  28. P. Legendre, L. Legendre, Numerical Ecology: Second English Edition (Elsevier Science, Amsterdam, 1998). 823 pMATHGoogle Scholar
  29. T. Lillesand, R. Kiefer, J. Chipman, Remote Sensing and Image Interpretation, 6th edn. (Wiley, New York, 2008). 763 pGoogle Scholar
  30. R.S. Lunetta, C. Elvidge, Remote Sensing Change Detection: Environmental Monitoring Methods and Applications (Taylor & Francis, New York, 2000). 340 pGoogle Scholar
  31. M.K. Macauley, Is the vision of the earth observation summit realizable? Space Policy 21, 29–39 (2005)CrossRefGoogle Scholar
  32. S.A.C. Nelson, P.A. Soranno, J. Qi, Land cover change in the upper Barataria Basin estuary, Louisiana, from 1972–1992: increases in wetland area. Environ. Manag. 29(5), 716–727 (2002)CrossRefGoogle Scholar
  33. J. Núňez, X. Otazu, O. Fors, A. Prades, V. Palà, R. Arbiol, Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 37(3), 1204–1211 (1999)CrossRefGoogle Scholar
  34. K. Pearson, On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 559–579 (1901)CrossRefMATHGoogle Scholar
  35. C. Pohl, V. Genderen, Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 19(5), 823–854 (1998)CrossRefGoogle Scholar
  36. T. Ranchin, L. Wald, The wavelet transform for the analysis of remotely sensed images. Int. J. Remote Sens. 14, 615–619 (1993)CrossRefGoogle Scholar
  37. T. Ranchin, L. Wald, Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation. Photogramm. Eng. Remote Sens. 66(1), 49–61 (2000)Google Scholar
  38. M. Rao, K.R.S. Murthi, Keeping up with remote sensing and GI advances – policy and legal perspectives. Space Policy 22, 262–273 (2006)CrossRefGoogle Scholar
  39. M. Robinson, Looking over the limb. LROC, http://lroc.sese.asu.edu/posts/895 (2015)
  40. J. Rogan, D. Chen, Remote sensing technology for mapping and monitoring land cover and land-use change. Progress in Planning 61, 301–325 (2004)Google Scholar
  41. J.C. Russ, The Image Processing Handbook (CRC Press, Boca Raton, 2002). 744 pMATHGoogle Scholar
  42. N.M. Short, The remote sensing tutorial. Published by NASA via Internet, (2003), http://rst.gsfc.nasa.gov/
  43. V.K. Singh, Discrete wavelet transform based image compression. Int. J. Remote Sens. 20, 3399–3405 (1999)CrossRefGoogle Scholar
  44. A. Singh, A. Harrison, Standardized principal components. Int. J. Remote Sens. 6, 883–896 (1985)CrossRefGoogle Scholar
  45. P.H. Swain, S.M. Davis, Remote Sensing: The Quantitative Approach (McGraw-Hill, New York, 1978), pp. 166–174Google Scholar
  46. J.R.G. Townshend, C.O. Justice, C. Gurney, J. McManus, The impact of misregistration on change detection. IEEE Trans. Geosci. Remote Sens. 30, 1054–1060 (1992)CrossRefGoogle Scholar
  47. R.E. Turner, M.M. Spencer, Atmospheric model for correction of spacecraft Data, in Proceedings of the Eighth International Symposium on Remote Sensing of the Environment, Ann Arbor, vol. 11, 1972, pp. 895–893Google Scholar
  48. Union of Concerned Scientists (UCS), UCS Satellite Database (2015), http://ucsusa.org/satellites
  49. United Nations Resolution 41/65. Principles relating to remote sensing of the Earth from outer space. Adopted without a vote (1986), http://www.oosa.unvienna.org/oosa/en/SpaceLaw/gares/html/gares_41_0065.htmlGoogle Scholar
  50. M. Williams, Legal Aspects of the Privatization and Commercialization of Space Activities, Remote Sensing, and National Space Legislation. Second report. (International Law Association, Toronto, 2006), p. 2Google Scholar
  51. D.A. Yocky, Multiresolution wavelet decomposition image merger of Landsat thematic mapper and SPOT panchromatic data. Photogramm. Eng. Remote Sens. 62(9), 1067–1074 (1996)Google Scholar
  52. H. Yuan, C.F. Van Der Wiele, S. Khorram, An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. Remote Sens. 1(3), 243–265 (2009)Google Scholar
  53. J. Zhou, D.L. Civco, J.A. Silander, A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 19(4), 743–757 (1998)CrossRefGoogle Scholar
  54. C. Zhu, X. Yang, Study of remote sensing image texture analysis and classification using wavelet. Int. J. Remote Sens. 19(16), 3197–3203 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  • Siamak Khorram
    • 1
    • 2
  • Stacy A. C. Nelson
    • 2
  • Cynthia F. van der Wiele
    • 3
  • Halil Cakir
    • 4
  1. 1.Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA
  2. 2.Center for Geospatial Analytics, North Carolina State UniversityRaleighUSA
  3. 3.Region IV NEPA Program OfficeUS Environmental Protection AgencyResearch Triangle ParkUSA
  4. 4.Air Quality Analysis Group/AQAD/OAQPSUS Environmental Protection AgencyResearch Triangle ParkUSA

Personalised recommendations