Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Mobile Metagenome

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_97-3



Metagenome: The collective genomes of all members of a bacterial community.

Mobile metagenome: The total pool of mobile genetic elements associated with a bacterial community.

Mobile genetic element (MGE): A discrete genetic unit capable of mediating its own transfer between distinct DNA molecules, and/or between distinct host cells of the same or different species. Plasmids, transposons, insertion sequences, conjugative transposons, integrons, and bacteriophage are all examples of MGE.

Horizontal gene transfer: Transfer and acquisition of genetic material between distinct cells or species, outside of and in addition to the normal process of inheritance (vertical gene transfer).


The adult human gastrointestinal tract (GIT) is home to a dense population of microorganisms, reaching an estimated 1013–1014individual prokaryotic cells in the distal colon and dominated by bacteria from ~150 to...


Horizontal Gene Transfer Mobile Genetic Element Bacteriocin Production Conjugative Plasmid Viral Metagenomes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Breitbart M, Hewson I, Felts B, et al. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol. 2003;185:6220–3.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Caporaso JG, Knight R, Kelley ST. Host-associated and free-living phage communities differ profoundly in phylogenetic composition. PLoS ONE. 2011;6:e16900.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Claesson MJ, Li Y, Leahy S, et al. Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A. 2006;103:6718–23.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Corr SC, Li Y, Riedel CU, et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A. 2007;104:7617–21.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol. 2010;8:26–38.PubMedGoogle Scholar
  6. Ebdon J, Muniesa M, Taylor H. The application of a recently isolated strain of Bacteroides (GB-124) to identify human sources of faecal pollution in a temperate river catchment. Water Res. 2007;41:3683–90.PubMedCrossRefGoogle Scholar
  7. Hehemann J-H, Correc G, Barbeyon T, et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464:908–12.PubMedCrossRefGoogle Scholar
  8. Jones BV. The human gut mobile metagenome: a metazoan perspective. Gut Microbes. 2010;1(6):417–33.CrossRefGoogle Scholar
  9. Jones BV, Marchesi JR. Accessing the mobile metagenome of the human gut microbiota. Mol Biosyst. 2007;3:749–58.PubMedCrossRefGoogle Scholar
  10. Jones BV, Sun F, Marchesi JR. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome. BMC Genomics. 2010;11:46.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 2007;14:169–81.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Lepage P, Colombet J, Marteau P, et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut. 2008;57:424–5.PubMedCrossRefGoogle Scholar
  13. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.PubMedCrossRefGoogle Scholar
  14. Licht TN, Wilcks A. Conjugative gene transfer in the gastrointestinal environment. Adv Appl Microbiol. 2005;58:77–95.CrossRefGoogle Scholar
  15. Lozupone CA, Hamady M, Cantral BL, et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl Acad Sci U S A. 2008;105:15076–81.PubMedCentralPubMedCrossRefGoogle Scholar
  16. McNiel NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr. 1984;39:338–42.Google Scholar
  17. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304.PubMedCrossRefGoogle Scholar
  18. Ogilvie LA, Firouzmand S, Jones BV. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioeng Bugs. 2012a;3(1):1–19.CrossRefGoogle Scholar
  19. Ogilvie LA, Caplin J, Dedi C, et al. Comparative (meta)genomic analysis and ecological profiling of human gut-specific bacteriophage ɸ B124-14. PLoS ONE. 2012b;7:e35053.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Reyes A, Haynes M, Hanson N, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466:334–8.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Salyers AA, Gupta A, Wang YP. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004;12:412–6.PubMedCrossRefGoogle Scholar
  23. Smalla K, Osburne AM, Wellington EMH. Isolation and characterisation of plasmids from bacteria. In: CM Thomas (ed) The horizontal gene pool, bacterial plasmids and gene spread. Amsterdam: Harwood Academic Publishers; 2000. p. 207–48.Google Scholar
  24. Smilie CD, Smith MB, Friedman J, et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011. doi: 10.1038/nature10571.Google Scholar
  25. Sommer MOA, Dantas G, Church GM. Functional characterisation of the antibiotic resistance reservoir in the human microflora. Science. 2009;325:1128–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Center for Biomedical and Health Science ResearchUniversity of Brighton, School of Pharmacy and Biomolecular SciencesBrighton, East SussexUK