Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Red Sea Metagenomics

  • Luke Thompson
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_803-2

Synonyms

Definition

The study of microbial taxonomic and functional diversity in waters of the Red Sea by sequencing millions of small fragments of genomic DNA isolated from bacteria, archaea, and viruses collected from the seawater by filtration.

Introduction

The Red Sea is a seawater inlet of the Indian Ocean, technically an incipient ocean forming via seafloor spreading of the Red Sea Rift, part of the Great Rift Valley. Mostly isolated from the world ocean, the Red Sea is connected only by a shallow strait (Bab el Mandeb, 310 m) to the Gulf of Aden and by the very shallow Suez Canal (25 m) to the Mediterranean Sea. The region is subject to high year-round solar irradiance and high air temperatures. Because riverine and other freshwater inputs draining into the Red Sea are negligible, net evaporation has resulted in high salinities. High solar irradiance and low circulation with the Indian Ocean also cause high water...

Keywords

Internal Transcribe Spacer Coral Reef Pelagic Zone Black Band Disease Brine Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Antunes A, Eder W, Fareleira P, Santos H, Huber R. Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine–seawater interface of the Shaban Deep, Red Sea. Extremophiles. 2002;7(1):29–34. doi:10.1007/s00792-002-0292-5.PubMedGoogle Scholar
  2. Antunes A, Franca L, Rainey FA, Huber R, Nobre MF, Edwards KJ, da Costa MS. Marinobacter salsuginis sp. nov., isolated from the brine-seawater interface of the Shaban Deep, Red Sea. Int J Syst Evol Microbiol. 2007;57(5):1035–40. doi:10.1099/ijs.0.64862-0.PubMedCrossRefGoogle Scholar
  3. Antunes A, Rainey FA, Wanner G, Taborda M, Patzold J, Nobre MF, da Costa MS, Huber R. A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol. 2008;190(10):3580–7. doi:10.1128/JB.01860-07.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Antunes A, Ngugi DK, Stingl U. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep. 2011;3(4):416–33. doi:10.1111/j.1758-2229.2011.00264.x.PubMedCrossRefGoogle Scholar
  5. Barneah O, Ben-Dov E, Kramarsky-Winter E, Kushmaro A. Characterization of black band disease in Red Sea stony corals. Environ Microbiol. 2007;9(8):1995–2006. doi:10.1111/j.1462-2920.2007.01315.x.PubMedCrossRefGoogle Scholar
  6. Coleman ML, Chisholm SW. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci USA. 2010;107(43):18634–9. doi:10.1073/pnas.1009480107.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Eder W, Jahnke LL, Schmidt M, Huber R. Microbial diversity of the brine–seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol. 2001;67(7):3077–85. doi:10.1128/AEM.67.7.3077-3085.2001.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R. Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol. 2002;4(11):758–63. doi:10.1046/j.1462-2920.2002.00351.x.PubMedCrossRefGoogle Scholar
  9. Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol. 2003;69(5):2430–43.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fuller N, West N, Marie D, Yallop M, Rivlin T. Dynamics of community structure and phosphate status of picocyanobacterial populations in the Gulf of Aqaba, Red Sea. Limnol Oceanogr. 2005;50:363. http://www.jstor.org/stable/3597908.CrossRefGoogle Scholar
  11. Kelman D, Kashman Y, Rosenberg E, Kushmaro A, Loya Y. Antimicrobial activity of Red Sea corals. Mar Biol. 2006;149(2):357–63. doi:10.1007/s00227-005-0218-8.CrossRefGoogle Scholar
  12. Kleijne A, Kroon D, Zevenboom W. Phytoplankton and foraminiferal frequencies in northern Indian Ocean and Red Sea surface waters. Netherlands J Sea Res. 1989;24(4):531–9.CrossRefGoogle Scholar
  13. Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian P-Y. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J. 2010;5(4):650–64. doi:10.1038/ismej.2010.165.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Millard AD, Mann NH. A temporal and spatial investigation of cyanophage abundance in the Gulf of Aqaba, Red Sea. J Mar Biol Assoc UK. 2006;86(03):507–15. doi:10.1017/S0025315406013415.CrossRefGoogle Scholar
  15. Ngugi DK, Stingl U. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea. PLoS ONE. 2012;7(11):e50274. doi:10.1371/journal.pone.0050274.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Ngugi DK, Antunes A, Brune A, Stingl U. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea. Mol Ecol. 2012;21(2):388–405. doi:10.1111/j.1365-294X.2011.05378.x.PubMedCrossRefGoogle Scholar
  17. Oz A, Sabehi G, Koblížek M, Massana R, Beja O. Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenic photosynthetic populations. Appl Environ Microbiol. 2005;71(1):344–53. doi:10.1128/AEM.71.1.344-353.2005.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc Natl Acad Sci USA. 2010; doi:10.1073/pnas.1009513107 Proc Natl Acad Sci USA 107, 16184–16189 (2010).Google Scholar
  19. Sharon I, Tzahor S, Williamson S, Shmoish M, Man-Aharonovich D, Rusch DB, Yooseph S, Zeidner G, Golden SS, Mackey SR, Adir N, Weingart U, Horn D, Venter JC, Mandel-Gutfreund Y, Béjà O. Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J. 2007;1(6):492–501. doi:10.1038/ismej.2007.67.PubMedCrossRefGoogle Scholar
  20. Steglich C, Post AF, Hess WR. Analysis of natural populations of Prochlorococcus spp. in the northern Red Sea using phycoerythrin gene sequences. Environ Microbiol. 2003;5(8):681–90. doi:10.1046/j.1462-2920.2003.00456.x.PubMedCrossRefGoogle Scholar
  21. Steindler L, Huchon D, Avni A, Ilan M. 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl Environ Microbiol. 2005;71(7):4127–31. doi:10.1128/AEM.71.7.4127-4131.2005.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Thompson LR, Field C, Romanuk T, Ngugi DK, Siam R, El Dorry H, Stingl U. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments. Ecol Evol. 2013. doi:10.1002/ece3.593.Google Scholar
  23. West NJ, Schönhuber WA, Fuller NJ, Amann RI, Rippka R, Post AF, Scanlan DJ. Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. Microbiology. 2001;147(Pt 7):1731–44.PubMedGoogle Scholar
  24. Zeidner G, Béjà O. The use of DGGE analyses to explore eastern Mediterranean and Red Sea marine picophytoplankton assemblages. Environ Microbiol. 2004;6(5):528–34.PubMedCrossRefGoogle Scholar
  25. Zeidner G, Preston CM, DeLong EF, Massana R, Post AF, Scanlan DJ, Béjà O. Molecular diversity among marine picophytoplankton as revealed by psbA analyses. Environ Microbiol. 2003;5(3):212–6. doi:10.1046/j.1462-2920.2003.00403.x.PubMedCrossRefGoogle Scholar
  26. Zeidner G, Bielawski JP, Shmoish M, Scanlan DJ, Sabehi G, Béjà O. Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ Microbiol. 2005;7(10):1505–13. doi:10.1111/j.1462-2920.2005.00833.x.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Knight LabBioFrontiers Institute, University of ColoradoBoulderUSA