Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Brazilian Atlantic Forest Soil Metagenome

  • Helisson Faoro
  • Emanuel Maltempi de Souza
  • Fábio Oliveira Pedrosa
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_781-1

The Brazilian Atlantic Forest

The Brazilian Atlantic Forest is one of the 25 biodiversity hot spots and also one of the most threatened areas in the world (Myers et al. 2000). The original Atlantic Forest covered an area of 1,315,460 km2 and spread to 17 states from the northeast to the south coast of Brazil. Nowadays, only 7.9 % of the original forest remains. It includes a dense rain forest, which comprehends the high montane, montane, submontane, coastal forests, and the mangrove; an ombrophilous mixed forest, with predominance of Araucariaceae and Lauraceae forests; and the deciduous and semi-deciduous stationary forests. The forest is divided in blocks ranging from 1,500 m above sea level in the high montane forest to the coastal forest and mangrove, creating a gradient of vegetation (Câmara 2003) (for a detailed map of the Brazilian Atlantic Forest, check http://mapas.sosma.org.br/).

According to the Brazilian Environment Ministry (MMA – http://www.mma.gov.br/biomas/mata-atlantica...

Keywords

Hydrolysis Phosphorus Glycerol Sludge Lipase 
This is a preview of subscription content, log in to check access

References

  1. Amann RI, Ludwig W, Schleifer K-L. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69.PubMedCentralPubMedGoogle Scholar
  2. Andreote DF, Jiménez DJ, Chaves D, et al. The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE. 2012;7(6):e38600.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arpigny JL, Jaeger K-E. Bacterial lipolytic enzymes: classification and properties. Biochem J. 1999;343:177–83.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bruce T, Martinez IB, Neto OM, et al. Bacterial community diversity in the Brazilian Atlantic Forest soils. Microb Ecol. 2010;60:840–9.PubMedCrossRefGoogle Scholar
  5. Câmara IG. Brief history of conservation in the Atlantic Forest. In: Galindo-Leal C, Câmara IG, editors. The Atlantic Forest of South America: biodiversity status, threats and outlook. Washington, DC: Island Press; 2003. p. 31–42.Google Scholar
  6. Couto GH, Glogauer A, Faoro H. Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the South Brazilian coast. Genet Mol Res. 2010;9(1):514–23.PubMedCrossRefGoogle Scholar
  7. Demain AL. From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol. 2006;33:486–95.PubMedCrossRefGoogle Scholar
  8. Di Stasi LC, Oliveira GP, Carvalhaes MA, et al. Medicinal plants popularly used in the Brazilian Tropical Atlantic Forest. Fitoterapia. 2002;73(1):69–91.PubMedCrossRefGoogle Scholar
  9. Etto RM, Cruz LM, Jesus EC, et al. Prokaryotic communities of acidic peatlands from the Southern Brazilian Atlantic Forest. Braz J Microbiol. 2012;43(2):661–74.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Faoro H, Alves AC, Souza EM, et al. Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Appl Environ Microbiol. 2010;76(14):4744–9.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Faoro H, Glogauer A, Souza EM, et al. Identification of a new lipase family in the Brazilian Atlantic Forest soil metagenome. Environ Microbiol Rep. 2011;3(6):750–5.PubMedCrossRefGoogle Scholar
  12. Faoro H, Glogauer A, Couto GH, et al. Characterization of a new acidobacteria-derived moderately thermostable lipase from a Brazilian Atlantic Forest soil metagenome. FEMS Microbiol Ecol. 2012;81(2):386–94.PubMedCrossRefGoogle Scholar
  13. Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. PNAS. 2006;103(3):626–31.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Hunter-Cevera JC. The value of microbial diversity. Curr Opin Microbiol. 1998;1(3):278–85.PubMedCrossRefGoogle Scholar
  15. Jaeger K-E, Dijkstra BW, Reetz M. Bacterial biocatalysts: biology, tree-dimensional structures, and biotechnological applications. Annu Rev Microbiol. 1999;53:315–51.PubMedCrossRefGoogle Scholar
  16. Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72:1719–28.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Lee M-H, Lee C-H, Oh T-K, et al. Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol. 2006;72(11):7406–9.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lopes FC, Calvo TR, Vilegas W, et al. Anti-inflammatory activity of Alchornea triplinervia ethyl acetate fraction: inhibition of H2O2, NO and TNF-a. Pharm Biol. 2010;48(12):1320–7.PubMedCrossRefGoogle Scholar
  19. Lorenz P, Schlper C. Metagenome – a challenging source of enzyme discovery. J Mol Catal B Enzym. 2002;19(20):13–9.CrossRefGoogle Scholar
  20. Metzker ML. Sequencing technologies – the next generation. Nature Rev. 2010;11:31–46.CrossRefGoogle Scholar
  21. Myers N, Mittermeirer RA, Mittermeier CG, et al. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–8.PubMedCrossRefGoogle Scholar
  22. Quintans JS, Soares BM, Ferraz RP, et al. Chemical constituents and anticancer effects of the essential oil from leaves of Xylopia laevigata. Planta Med. 2013;79(2):123–30.CrossRefGoogle Scholar
  23. Raes J, Korbel JO, Lercher MJ, et al. Prediction of effective genome size in metagenomic samples. Genome Biol. 2007;8(1):8R10.1–11.CrossRefGoogle Scholar
  24. Steele HL, Jaeger K-E, Daniel R, et al. Advances in recovery on novel biocatalysts from metagenomes. J Mol Microbiol Biotechnol. 2009;16(1–2):25–37.PubMedCrossRefGoogle Scholar
  25. Torsvik V, ØVreas L, Thingstad TF. Prokaryotic diversity – magnitude, dynamics and controlling factors. Science. 2002;296:1064–6.PubMedCrossRefGoogle Scholar
  26. Ward NL, Challaconbe JF, Janssen PH, et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol. 2009;75:2046–56.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Helisson Faoro
    • 1
  • Emanuel Maltempi de Souza
    • 1
  • Fábio Oliveira Pedrosa
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyFederal University of ParanaCuritibaBrazil