Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Human Microbiome, Bacteroidetes in the

  • Gena D. Tribble
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_77-5



Bac.te.ro.i.de′tes. bacteroid-, “bacteria resembling a rod”; -etes, “the phylum of.” The phylum Bacteroidetes is a phenotypically diverse group of gram-negative rods that do not form endospores. Current taxonomy of the phylum is based on 16S rDNA gene sequences. The phylum contains four classes: Bacteroidia, Cytophagia, Flavobacteria, and Sphingobacteria (Krieg et al. 2011).


The phylum Bacteroidetes is composed of gram-negative rods found in diverse environmental habitats as well as the flora of insects and animals. This phylum diverged quite early in the evolutionary lineage of bacteria, and thus the Bacteroidetes are not closely related to the Proteobacteria gram-negative rods such as Escherichia coli or Pseudomonas aeruginosa...


Bile Acid Periodontal Disease Periodontal Pocket Polymicrobial Infection Human Microbiome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Alauzet C, Marchandin H, Lozniewski A. New insights into Prevotella diversity and medical microbiology. Future Microbiol. 2010a;5:1695–718.PubMedCrossRefGoogle Scholar
  2. Alauzet C, Mory F, Teyssier C, Hallage H, Carlier JP, Grollier G, Lozniewski A. Metronidazole resistance in Prevotella spp. and description of a new nim gene in Prevotella baroniae. Antimicrob Agents Chemother. 2010b;54:60–4.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–20.PubMedCrossRefGoogle Scholar
  4. Bilgrami S, Bergstrom SK, Peterson DE, Hill DR, Dainiak N, Quinn JJ, Ascensao JL. Capnocytophaga bacteremia in a patient with Hodgkin’s disease following bone marrow transplantation: case report and review. Clin Infect Dis. 1992;14:1045–9.PubMedCrossRefGoogle Scholar
  5. Brook I. Microbiology of polymicrobial abscesses and implications for therapy. J Antimicrob Chemother. 2002;50:805–10.PubMedCrossRefGoogle Scholar
  6. Colombo APV, Bennet S, Cotton SL, Goodson JM, Kent R, et al. Impact of periodontal therapy on the subgingival microbiota of severe periodontitis: comparison between good responders and individuals with refractory periodontitis using the human oral microbe identification microarray. J Periodontol. 2012;83:1279–87.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Comstock LE, Coyne MJ. Bacteroides thetaiotaomicron: a dynamic, niche-adapted human symbiont. Bioessays. 2003;25:926–9.PubMedCrossRefGoogle Scholar
  8. Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature. 2007;449:811–8.PubMedCrossRefGoogle Scholar
  9. Durbán A, Abellán JJ, Jiménez-Hernández N, Latorre A, Moya A. Daily follow-up of bacterial communities in the human gut reveals stable composition and host-specific patterns of interaction. FEMS Microbiol Ecol. 2012;81(2):427–37.PubMedCrossRefGoogle Scholar
  10. Eefting M, Paardenkooper T. Capnocytophaga canimorsus sepsis. Blood. 2010;116:1396.PubMedCrossRefGoogle Scholar
  11. Fletcher CM, Coyne MJ, Bentley DL, Villa OF, Comstock LE. Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem. Proc Natl Acad Sci U S A. 2007;104:2413–8.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Forlenza S. Capnocytophaga: an opportunistic pathogen. Clin Microbiol Newslett. 1985;7:17–9.CrossRefGoogle Scholar
  13. Forlenza S. Capnocytophaga: an update. Clini Microbiol Newslett. 1991;13:89–91.CrossRefGoogle Scholar
  14. Gill SR, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–9.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Guillon H, Eb F, Mammeri H. Characterization of CSP-1, a novel extended-spectrum beta-lactamase produced by a clinical isolate of Capnocytophaga sputigena. Antimicrob Agents Chemother. 2010;54:2231–4.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Human Microbiome Jumpstart Reference Strains Consortium, et al. A catalog of reference genomes from the human microbiome. Science. 2010;328:994–9.CrossRefGoogle Scholar
  17. Jolivet-Gougeon A, Guérin J, Tamanai-Shacoori Z, Gandemer V, Sixou J-L, Bonnaure-Mallet M. Influence of previous antimicrobial therapy on oral carriage of beta-lactamase producing Capnocytophaga isolates. Acta Paediatr. 2008;97:964–7.PubMedCrossRefGoogle Scholar
  18. Krieg N, Ludwig W, Euzéby J, Whitman W. Phylum XIV. Bacteroidetes phyl. nov. In: Krieg N, Staley J, Brown D, Hedlund B, Paster B, et al., editors. Bergey’s manual® of systematic bacteriology. New York: Springer; 2010. p. 25–469.Google Scholar
  19. KulaginA EV, Efimov BA, Maximov PY, Kafarskaia LI, Chaplin AV, Shkoporov AN. Species composition of bacteroidales order bacteria in the feces of healthy people of various ages. Biosci Biotechnol Biochem. 2012;76:169–71.PubMedCrossRefGoogle Scholar
  20. Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol. 2005;43:3944–55.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.PubMedCrossRefGoogle Scholar
  22. Ludwig W, Euzéby J, Whitman W. Road map of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In: Krieg N, Staley J, Brown D, Hedlund B, Paster B, et al., editors. Bergey’s manual® of systematic bacteriology. New York: Springer; 2010. p. 1–19–24.Google Scholar
  23. Mally M, Shin H, Paroz C, Landmann R, Cornelis GR. Capnocytophaga canimorsus: a human pathogen feeding at the surface of epithelial cells and phagocytes. PLoS Pathog. 2008;4:e1000164.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Manfredi P, Renzi F, Mally M, Sauteur L, Schmaler M, Moes S, Jenö P, Cornelis GR. The genome and surface proteome of Capnocytophaga canimorsus reveal a key role of glycan foraging systems in host glycoproteins deglycosylation. Mol Microbiol. 2011;81:1050–60.PubMedCrossRefGoogle Scholar
  25. Parenti DM, Snydman DR. Capnocytophaga species: infections in nonimmunocompromised and immunocompromised hosts. J Infect Dis. 1985;151:140–7.PubMedCrossRefGoogle Scholar
  26. Rautio M, Lönnroth M, Saxén H, Nikku R, Väisänen ML, Finegold SM, Jousimies-Somer H. Characteristics of an unusual anaerobic pigmented gram-negative rod isolated from normal and inflamed appendices. Clin Infect Dis. 1997;25 Suppl 2:S107–10.PubMedCrossRefGoogle Scholar
  27. Rosenau A, Cattier B, Gousset N, Harriau P, Philippon A, Quentin R. Capnocytophaga ochracea: characterization of a plasmid-encoded extended-spectrum TEM-17 beta-lactamase in the phylum Flavobacter-bacteroides. Antimicrob Agents Chemother. 2000;44:760–2.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Sakamoto M, Benno Y. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol. 2006;56:1599–605.PubMedCrossRefGoogle Scholar
  29. Sansonetti PJ. To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol. 2010;4:8–14.PubMedCrossRefGoogle Scholar
  30. Saulnier DM, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141:1782–91.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Sharma A. Virulence mechanisms of Tannerella forsythia. Periodontol 2000. 2010;54:106–16.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Shkoporov AN, Khokhlova EV, Kulagina EV, Smeianov VV, Kafarskaia LI, EfimoV BA. Application of several molecular techniques to study numerically predominant Bifidobacterium spp. and Bacteroidales order strains in the feces of healthy children. Biosci Biotechnol Biochem. 2008;72:742–8.PubMedCrossRefGoogle Scholar
  33. Smith CJ, Tribble GD, Bayley DP. Genetic elements of Bacteroides species: a moving story. Plasmid. 1998;40:12–29.PubMedCrossRefGoogle Scholar
  34. Teles FR, Teles RP, Uzel NG, Song XQ, Torresyap G, Socransky SS, Haffajee AD. Early microbial succession in redeveloping dental biofilms in periodontal health and disease. J Periodont Res. 2012;47:95–104.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. Environmental and Gut Bacteroidetes: The Food Connection. Front Microbiol. 2011;2:93.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Toft C, Andersson SGE. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet. 2010;11:465–75.PubMedCrossRefGoogle Scholar
  37. Tribble GD, Lamont RJ. Bacterial invasion of epithelial cells and spreading in periodontal tissue. Periodontol 2000. 2010;52:68–83.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Tribble GD, Garza JJ, Yeung VL, Rigney TW, Dao D-HV, Rodrigues PH, Walker CB, Smith CJ. Genetic analysis of mobile tetQ elements in oral Prevotella species. Anaerobe. 2010;16:604–9.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.PubMedCrossRefGoogle Scholar
  40. Ulrich M, et al. Relative contribution of Prevotella intermedia and Pseudomonas aeruginosa to lung pathology in airways of patients with cystic fibrosis. Thorax. 2010;65:978–84.PubMedCrossRefGoogle Scholar
  41. Weiss EI, London J, Kolenbrander PE, Kagermeier AS, Andersen RN. Characterization of lectinlike surface components on Capnocytophaga ochracea ATCC 33596 that mediate coaggregation with gram-positive oral bacteria. Infect Immun. 1987;55:1198–202.PubMedCentralPubMedGoogle Scholar
  42. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20:593–621.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Wu D, et al. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature. 2009;462:1056–60.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Xu J, et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 2007;5:e156.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Zaura E, Keijser BJF, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009;9:259.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PeriodonticsUniversity of Texas Health Science Center at Houston, School of DentistryHoustonUSA