Skip to main content

New Computational Methodologies to Understand Microbial Diversity

  • Living reference work entry
  • First Online:
Encyclopedia of Metagenomics
  • 155 Accesses

Synonyms

Bioinformatic methods for exploring genetic diversity; Methods for metagenomic sequence analysis

Definition

Microbial diversity is broadly defined as genetic variation in natural microbial populations.

Introduction

Metagenomics studies the genetic materials of a natural microbial community recovered from an environmental sample. A typical metagenomic study involves two major steps, including an initial experimental stage for genetic material extraction and sequencing and a following stage using standard bioinformatic tools for molecular sequence analysis. The present review, however, focuses on several recently developed computational methods that are designed to explore ecological diversity of microbial populations through analyzing published metagenomic databases. Although these methods have only been used to mine metagenomic data sets from the oceans, they can be easily adapted to those from any other environments.

An Ensemble Machine Learning Method to Predict Protein...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang J-M, Su EC-Y, Lo A, Chiu H-S, Sung T-Y, Hsu W-L. PSLDoc: protein subcellular localization prediction based on gapped-dipeptides and probabilistic latent semantic analysis. Proteins. 2008;72:693–710.

    Article  CAS  PubMed  Google Scholar 

  • Dyrlov Bendtsen J, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: signalP 3.0. J Mol Biol. 2004;340:783–95.

    Article  CAS  Google Scholar 

  • Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics. 2001;17:721–8.

    Article  CAS  PubMed  Google Scholar 

  • Käll L, Krogh A, Sonnhammer ELL. Advantages of combined transmembrane topology and signal peptide prediction – the Phobius web server. Nucleic Acids Res. 2007;35:W429–32.

    Article  PubMed Central  PubMed  Google Scholar 

  • Koski LB, Golding GB. The closest BLAST hit is often not the nearest neighbor. J Mol Evol. 2001;52:540–2.

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Szafron D, Greiner R, Lu P, Wishart DS, Poulin B, et al. Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics. 2004;20:547–56.

    Article  CAS  PubMed  Google Scholar 

  • Luo H. Predicted protein subcellular localization in dominant surface ocean bacterioplankton. Appl Environ Microbiol. 2012;78:6550–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo H, Hughes AL. dN/dS does not show positive selection drives separation of polar-tropical SAR11 populations. Mol Syst Biol. 2012;8.

    Google Scholar 

  • Luo H, Benner R, Long RA, Hu J. Subcellular localization of marine bacterial alkaline phosphatases. Proc Natl Acad Sci USA. 2009;106:21219–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo H, Zhang H, Long RA, Benner R. Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre. Aquat Microb Ecol. 2011;62:61–9.

    Article  Google Scholar 

  • Luo H, Löytynoja A, Moran MA. Genome content of uncultivated marine Roseobacters in the surface ocean. Environ Microbiol. 2012;14:41–51.

    Article  CAS  PubMed  Google Scholar 

  • McHardy AC, Martin HG, Tsirigos A, Hugenholtz P, Rigoutsos I. Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods. 2007;4:63–72.

    Article  CAS  PubMed  Google Scholar 

  • Menne KML, Hermjakob H, Apweiler R. A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics. 2000;16:741–2.

    Article  CAS  PubMed  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern tropical pacific. PLoS Biol. 2007;5:e77.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics. 1997;13:555–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiwei Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Luo, H. (2013). New Computational Methodologies to Understand Microbial Diversity. In: Nelson, K. (eds) Encyclopedia of Metagenomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6418-1_762-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6418-1_762-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6418-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics