Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Human Microbiome, Actinobacteria in

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_76-9



Microorganisms that belong to the phylum Actinobacteria have been found in the human body, from the skin to mucosal surfaces. They are important members of a normal microbiota. Their presence and abundance in these specific sites correlates with the individual’s health status. In light of their clinical relevance, knowledge of these species is significantly important. This review describes the basic biology of Corynebacterium, Propionibacterium, Rothia, Actinomyces, and Bifidobacterium, the five most important genera of Actinobacteria that live in healthy individuals.


The human body is home to an enormous number of microbes, collectively called the microbiota. In a normal microbiota, both commensals and opportunistic pathogens are found. Many of these commensals and opportunistic pathogens are bacteria that affiliate with the phylum Actinobacteria. Commonly known as a high-percent G + C group of Gram-positive bacteria...


Sialic Acid Opportunistic Pathogen Early Colonizer Human Microbiome Project Bifidobacterium Longum 
This is a preview of subscription content, log in to check access


  1. Brüggemann H, Henne A, Hoster F, Liesegang H, Wiezer A, Strittmatter A, et al. The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science. 2004;305:671–3.PubMedCrossRefGoogle Scholar
  2. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–70.PubMedCentralPubMedGoogle Scholar
  3. Collins MD. Reclassification of Bacterionema matruchotii (Mendel) in the genus Corynebacterium, as Corynebacterium matruchotii comb. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt I Orig Reihe C. 1982;3(3):364–7.Google Scholar
  4. Daneshvar MI, Hollis DG, Weyant RS, et al. Identification of some charcoal-black pigmented CDC fermentative coryneform group 4 isolates as Rothia dentocariosa and some as Corynebacterium aurimucosum: proposal of Rothia dentocariosa emend.. Georg and Brown 1967, Corynebacterium aurimucosum emend. Yasn et al. 2002, and Corynebacterium nigricans Shukla et al. 2003 pro synon. Corynebacterium aurimucosum. J Clin Microbiol. 2004;42:4189–98.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Delisle AL, Nauman RK, Minah GE. Isolation of a bacteriophage for Actinomyces viscosus. Infect Immun. 1978;20:303–6.PubMedCentralPubMedGoogle Scholar
  6. Foroni E, Serafini F, Amidani D, et al. Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. Microb Cell Fact. 2011;10 Suppl 1:S16.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Henssge U, Do T, Radford DR, et al. Emended description of Actinomyces naeslundii and description of Actinomyces oris sp.nov. and Actinomyces johnsonii sp. nov., previously identified as Actinomyces naeslundii genospecies 1, 2 and WVA 963. Int J Syst Evol Microbiol. 2009;59:509–16.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Lomholt HB, Kilian M. Population genetic analysis of Propionibacterium acnes identifies a subpopulation and epidemic clones associated with acne. PLoS ONE. 2010;5:e12277.PubMedCentralPubMedCrossRefGoogle Scholar
  9. McDowell A, Valanne S, Ramage G, et al. Propionibacterium acnes types I and II represent phylogenetically distinct groups. J Clin Microbiol. 2005;43:326–34.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Mishra A, Wu C, Yang J, et al. The Actinomyces oris type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. Mol Microbiol. 2010;77(4):841–54.Google Scholar
  11. Moorer WR, Ten Cate JM, Buijs JF. Calcification of a cariogenic Streptococcus and of Corynebacterium (Bacterionema) matruchotii. J Dent Res. 1993;72:1021–6.PubMedCrossRefGoogle Scholar
  12. Morou-Bermudez E, Burne R. Analysis of urease expression in Actinomyces naeslundii WVU45. Infect Immun. 2000;68(12):6670–6.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Mouton C, Reynolds HS, Genco RJ. Characterization of tufted streptococci isolated from the “corn cob” configuration of human dental plaque. Infect Immun. 1980;27:235–45.PubMedCentralPubMedGoogle Scholar
  14. O’Connell Motherway M, Zomer A, Leahy SC, et al. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci USA. 2011;108:11217–22.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Onisi M. Study on the Actinomyces isolated from the deeper layers of carious dentine. Shikaguka Zasshi. 1949;6:273–82.Google Scholar
  16. Schell MA, Karmirantzou M, Snel B, et al. The genome sequence of Bifidobacterium longum reflects its adaption to the human gastrointestinal tract. Proc Natl Acad Sci USA. 2002;99(22):14422–7.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Tauch A, Kaiser O, Hain T, et al. Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol. 2005;187:4671–82.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Ton-that H, Schneewind O. Assembly of pili on the surface of Corynebacterium diphtheria. Mol Microbiol. 2003;50(4):1429–38.PubMedCrossRefGoogle Scholar
  19. Turroni F, Peano C, Pass DA, et al. Diversity of Bifidobacteria within the infant gut microbiota. PLoS ONE. 2012;7:e36957.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Wu C, Mishra A, Yang J, et al. Dual function of a tip fimbrilin of Actinomyces in fimbrial assembly and receptor binding. J Bacteriol. 2011;193:3197–206.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Yamane K, Nambu T, Yamanaka T, et al. Pathogenicity of exopolysaccharide-producing Actinomyces oris isolated from an apical abscess lesion. Int Endod J. 2012. doi:10.1111/j.1365-2591.2012.02099.x.PubMedCentralPubMedGoogle Scholar
  22. Yeung MK. Molecular and genetic analyses of Actinomyces spp. Crit Rev Oral Biol Med. 1999;10:120–38.PubMedCrossRefGoogle Scholar
  23. Zaura E, Keiiser BJ, Huse SM, et al. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009;9:259.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Microbiology and Molecular GeneticsHoustonUSA