Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Caves Biofilm Metagenomics

  • Natuschka LeeEmail author
  • Wolfang Liebl
  • Annette S. Engel
  • Megan Porter
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_718-2



Cave biofilms are biofilms or microbial mats that flourish in natural or anthropogenic cave settings. A biofilm is a three-dimensional assemblage of microbial communities that are embedded within a self-produced matrix of extracellular polymeric substances adhered to a surface. Depending on the geochemical and geological setting of a cave, biofilms comprised of variable microbial community compositions and metabolic processes can profoundly impact the speleogenetic history of a cave and the overall ecology of the cave setting.


Caves are natural, solutionally or collapse-enlarged openings that form in rock, including but not limited to limestone, granite, lava, salt, or even ice. Caves are widely distributed geographically and can offer portals into different types of extreme, “dark life” habitats, such as the...


Cave System Marburg Virus Cave Entrance Organic Matter Transformation Cave Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Banerjee S, Joshi SR. Insights into cave architecture and the role of the bacterial biofilm. Proc Natl Acad Sci India Sect B Biol Sci. 2013;83:277–290.Google Scholar
  2. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One. 2012;7:e34953.PubMedCentralPubMedGoogle Scholar
  3. Borgonie G, Dierick M, Houthoofd W, Willems M, Jacobs P, Bert W. Refuge from predation, the benefit of living in an extreme acidic environment? Biol Bull. 2010;219:268–76.PubMedGoogle Scholar
  4. Canganella F, Bianconi G. Microbial Ecology of Submarine Caves. Encyclopedia of Geobiology Encyclopedia of Earth Sciences Series 2011, pp 599–606. Springer Verlag.Google Scholar
  5. Dattagupta S, Schaperdoth I, Montanari A, Mariani S, Kita N, Valley JW, Macalady JL. A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. ISME J. 2009;3:935–43.PubMedGoogle Scholar
  6. Denef VJ, Mueller RS, Banfield JF. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J. 2010;4:599–610.PubMedGoogle Scholar
  7. Engel AS. Microbial diversity of cave ecosystems. In: Barton LL, Mandl M, Loy A, editors. Geomicrobiology: molecular and environmental perspective. The Netherlands: Springer Science + Business Media B.V; 2010. p. 219–38.Google Scholar
  8. Grünke S, Lichtschlag A, de Beer D, Kuypers M, Lösekann-Behrens T, Ramette A, Boetius A. Novel observations of Thiobacterium, a sulfur-storing Gammaproteobacterium producing gelatinous mats. ISME J. 2010;4:1031–43.PubMedGoogle Scholar
  9. Iker BC, Kambesis P, Oehrle SA, Groves C, Barton HA. Microbial atrazine breakdown in a karst groundwater system and its effect on ecosystem energetics. J Environ Qual. 2010;19(39):509–18.Google Scholar
  10. Johnson DB. Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol Ecol. 2012;81:2–12.PubMedGoogle Scholar
  11. Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, Pearson A, Macalady JL. Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J. 2012;6:158–70.PubMedCentralPubMedGoogle Scholar
  12. Krawczyk-Bärsch E, Lünsdorf H, Arnold T, Brendler V, Eisbein E, Jenk U, Zimmermann U. The influence of biofilms on the migration of uranium in acid mine drainage (AMD) waters. Sci Total Environ. 2011;409:3059–65.PubMedGoogle Scholar
  13. Lear G, Lewis GD. Microbial biofilms: current research and applications. Norwich: Caister Academic Press; 2012. p. 228.Google Scholar
  14. Lee NM, Meisinger DB, Aubrecht R, Kovacik L, Saiz-Jimenez C, Baskar S, Baskar R, Liebl W, Porter M, Summers Engel A. Life in caves and karst environments. In: Bell EM, editor. Life at extremes: environments, organisms and strategies for survival. 1st ed. CABI International: Oxfordshire; 2012. p. 320–44.Google Scholar
  15. Maganga GD, Bourgarel M, Ella GE, Drexler JF, Gonzalez JP, Drosten C, Leroy EM. Is Marburg virus enzootic in Gabon? J Infect Dis. 2011;204 Suppl 3:S800–3.PubMedGoogle Scholar
  16. Mulec J, Kosi G. Lampenflora algae and methods of growth control. J Cave Karst Stud. 2009;71:109–15.Google Scholar
  17. Northup DE, Melim LA, Spilde MN, Hathaway JJ, Garcia MG, Moya M, Stone FD, Boston PJ, Dapkevicius ML, Riquelme C. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. Astrobiology. 2011;11:601–18.PubMedCentralPubMedGoogle Scholar
  18. Ortiz M, Neilson JW, Nelson WM, Legatzki A, Byrne A, Yu Y, Wing RA, Soderlund CA, Pyror BM, Pierson LS, 3rd et al. Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner Caverns., AZ. Microb Ecol. 2013;65:371–383.Google Scholar
  19. Pedersen K. The deep biosphere. GFF (J Geol Soc Sweden). 2010;132:93–4.Google Scholar
  20. Portillo MC, Gonzalez JM. Moonmilk deposits originate from specific bacterial communities in Altamira Cave (Spain). Microb Ecol. 2011;61:182–9.PubMedGoogle Scholar
  21. Romero A. Caves as biological spaces. Polymath: An Interdisciplinary Arts and Sciences Journal. 2012;2.Google Scholar
  22. Rossmassler K, Engel AS, Twing KI, Hanson TE, Campbell BJ. Drivers of epsilonproteobacterial community composition in sulfidic caves and springs. FEMS Microbiol Ecol. 2012;79:421–32.PubMedGoogle Scholar
  23. Rusznyák A, Akob DM, Nietzsche S, Eusterhues K, Totsche KU, Neu TR, Frosch T, Popp J, Keiner R, Geletneky J, Katzschmann L, Schulze ED, Küsel K. Calcite biomineralization by bacterial isolates from the recently discovered pristine Karstic Herrenberg Cave. Appl Environ Microbiol. 2012;78:1157–67.PubMedCentralPubMedGoogle Scholar
  24. Saiz-Jimenez C. Painted material. In: Mitchell R, McNamara CJ, editors. Cultural heritage microbiology: fundamental studies in conservation science. Washington, DC: ASM Press; 2010. p. 3–13.Google Scholar
  25. Tomova I, Lazarkevic I, Tomova A, Kambourova M, Vasileva-Tonkova E. Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria. Int. J Speleol. 2012;42:8.Google Scholar
  26. Urzì C, De Leo F, Bruno L, Albertano P. Microbial diversity in paleolithic caves: a study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microb Ecol. 2010;60:116–29.PubMedGoogle Scholar
  27. Weinberger AD, Sun CL, Pluciński MM, Denef VJ, Thomas BC, Horvath P, Barrangou R, Gilmore MS, Getz WM, Banfield JF. Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Comput Biol. 2012;8:e1002475.PubMedCentralPubMedGoogle Scholar
  28. White WB, Culver DC. Encyclopedia of caves. Academic Press; 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Natuschka Lee
    • 1
    Email author
  • Wolfang Liebl
    • 2
  • Annette S. Engel
    • 3
  • Megan Porter
    • 4
  1. 1.Lab Microbial Systems Ecology/Department of MicrobiologyTechnische Universität MünchenFreising/MunichGermany
  2. 2.Department of MicrobiologyTechnische Universität MünchenFreising/MunichGermany
  3. 3.Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleUSA
  4. 4.Department of BiologyUniversity of South DakotaVermillionUSA