Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Beta-Lactam Resistance

Mechanisms of Bacterial Resistance to β-Lactam Antibiotics
  • Ana Maria Cardenas
  • Timothy Palzkill
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_58-2

Synonyms

Definition

β-lactam resistance refers to the intrinsic or acquired ability of bacteria to avoid the action of β-lactam antibiotics. It is important to note that resistance in the clinical setting may not be predictable by in vitro susceptibility testing. In some cases, susceptible bacteria may be located in areas that are not accessible to antibiotics, or the presence of biofilms may restrict antibiotic access to susceptible strains, so strains may behave as if they are resistant. Thus, when using an antimicrobial agent, the in vitro susceptibility and metabolic state of the bacterial strain, as well as the attainable drug concentrations at the infection site, must also be considered.

Introduction

β-lactam antibiotics are one of the oldest and most prescribed classes of antibacterial treatments worldwide (Hamad 2010). They comprise a class of natural, synthetic, and semisynthetic compounds that act by inactivating enzymes involved in cell wall synthesis....

Keywords

Efflux Pump Small Multidrug Resistance Catalytic Serine Heptavalent Pneumococcal Conjugate Vaccine Porin Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Ambler RP, Coulson AF, Frere JM, Ghuysen JM, Joris B, Forsman M, et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991;276(Pt 1):269–70.PubMedCentralPubMedGoogle Scholar
  2. Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol. 2007;74(12):1686–701.PubMedCrossRefGoogle Scholar
  3. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–33.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chen Y, McReynolds A, Shoichet BK. Re-examining the role of Lys67 in class C beta-lactamase catalysis. Protein Sci. 2009;18(3):662–9.PubMedCentralPubMedGoogle Scholar
  6. Davin-Regli A, Bolla JM, James CE, Lavigne JP, Chevalier J, Garnotel E, et al. Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr Drug Targets. 2008;9(9):750–9.PubMedCrossRefGoogle Scholar
  7. Hamad B. The antibiotics market. Nat Rev Drug Discov. 2010;9(9):675–6.PubMedCrossRefGoogle Scholar
  8. Helfand MS, Bonomo RA. Beta-lactamases: a survey of protein diversity. Curr Drug Targets Infect Disord. 2003;3(1):9–23.PubMedCrossRefGoogle Scholar
  9. Jacoby GA. Amp C beta-lactamases. Clin Microbiol Rev. 2009;22(1):161–82.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs. 2004;64(2):159–204.PubMedCrossRefGoogle Scholar
  11. Liang Z, Li L, Wang Y, Chen L, Kong X, Hong Y, et al. Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS ONE. 2011;6(8):e23606.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Livermore DM, Woodford N. The beta-lactamase threat in Enterobacteriaceae. Pseudomonas and Acinetobacter. Trends Microbiol. 2006;14(9):413–20.PubMedCrossRefGoogle Scholar
  13. Majiduddin FK, Materon IC, Palzkill TG. Molecular analysis of beta-lactamase structure and function. Int J Med Microbiol. 2002;292(2):127–37.PubMedCrossRefGoogle Scholar
  14. Maveyraud L, Golemi-Kotra D, Ishiwata A, Meroueh O, Mobashery S, Samama JP. High-resolution X-ray structure of an acyl-enzyme species for the class D OXA-10 beta-lactamase. J Am Chem Soc. 2002;124(11):2461–5.PubMedCrossRefGoogle Scholar
  15. Morell EA, Balkin DM. Methicillin-resistant Staphylococcus aureus: a pervasive pathogen highlights the need for new antimicrobial development. Yale J Biol Med. 2010;83(4):223–33.PubMedCentralPubMedGoogle Scholar
  16. Murray P, Rosenthal KS, Pfaller MA. Medical microbiology. 5th ed. Philadelphia: Elsevier Mosby; 2005.Google Scholar
  17. Naas T, Oxacelay C, Nordmann P. Identification of CTX-M-type extended-spectrum-beta-lactamase genes using real-time PCR and pyrosequencing. Antimicrob Agents Chemother. 2007;51(1):223–30.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Pages JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol. 2008;6(12):893–903.PubMedCrossRefGoogle Scholar
  19. Poole K. Resistance to beta-lactam antibiotics. Cell Mol Life Sci. 2004;61(17):2200–23.PubMedCrossRefGoogle Scholar
  20. Rice LB. Mechanisms of resistance and clinical relevance of resistance to beta-lactams, glycopeptides, and fluoroquinolones. Mayo Clin Proc. 2012;87(2):198–208.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Tzouvelekis LS, Bonomo RA. SHV-type beta-lactamases. Curr Pharm Des. 1999;5(11):847–64.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.University of Pennsylvania Health SystemUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of PharmacologyBaylor College of MedicineHoustonUSA