Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

METAREP, Overview

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_238-1

With increasing scale and complexity of current metagenomic studies approaching terabase-volumes of sequence data, scalability of biological analysis software has become an essential requirement. Toward that end, we have developed JCVI Metagenomics Reports (METAREP), an open-source tool, which integrates the highly scalable search engine Solr/Lucene, R, and CAKEPHP into an extendible Web-based software to query, browse, compare, and share extremely large volumes of metagenomic annotations. The software allows flexible and simultaneous comparison of taxonomic and biological pathway and individual enzyme abundances across hundreds of samples. In this chapter, we provide an overview of this functionality, data format, import, installation, and customization. We present new features that have been released with version 1.4.0 including the implementation of two-way statistical tests to compare features of two datasets without replicates, protein sequence integration, and BLASTP homology...


Human Microbiome Project Relative Count Annotation Attribute NCBI Taxonomy Large Sample Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8:e1002358. doi:10.1371/journal.pcbi.1002358.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. doi:10.1016/S0022-2836(05)80360-2.PubMedCrossRefGoogle Scholar
  3. Angiuoli SV, Matalka M, Gussman A, Galens K, Vangala M, et al. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC Bioinformatics. 2011;12:356. doi:10.1186/1471-2105-12-356.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25:25–9. doi:10.1038/75556.PubMedCentralPubMedCrossRefGoogle Scholar
  5. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science. 2006;311:496–503. doi:10.1126/science.1120250.PubMedCrossRefGoogle Scholar
  6. Goecks J, Nekrutenko A, Taylor J, Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11:R86. doi:10.1186/gb-2010-11-8-r86.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Goll J, Rusch DB, Tanenbaum DM, Thiagarajan M, Li K, et al. METAREP: JCVI metagenomics reports–an open source tool for high-performance comparative metagenomics. Bioinformatics. 2010;26:2631–2. doi:10.1093/bioinformatics/btq455.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Goll J, Thiagarajan M, Abubucker S, Huttenhower C, Yooseph S, et al. A case study for large-scale human microbiome analysis using JCVI’s Metagenomics Reports (METAREP). PLoS ONE. 2012;7:e29044. doi:10.1371/journal.pone.0029044.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res. 2003;31:371–3.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 2004;68:669–85. doi:10.1128/MMBR.68.4.669-685.2004.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215–21. doi:10.1038/nature11209.CrossRefGoogle Scholar
  12. Madera M, Vogel C, Kummerfeld SK, Chothia C, Gough J. The SUPERFAMILY database in 2004: additions and improvements. Nucleic Acids Res. 2004;32:D235–9. doi:10.1093/nar/gkh117.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Markowitz VM, Chen I-MA, Chu K, Szeto E, Palaniappan K, et al. IMG/M-HMP: a metagenome comparative analysis system for the human microbiome project. PLoS ONE. 2012;7:e40151. doi:10.1371/journal.pone.0040151.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, et al. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics. 2008;9:386. doi:10.1186/1471-2105-9-386.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Milligan, Glenn W. An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika1980;45(3):325–342.Google Scholar
  16. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301. doi:10.1093/nar/gkr1065.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Stein LD. The case for cloud computing in genome informatics. Genome Biol. 2010;11:207. doi:10.1186/gb-2010-11-5-207.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Sun S, Chen J, Li W, Altintas I, Lin A, et al. Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res. 2011;39:D546–51. doi:10.1093/nar/gkq1102.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Tanenbaum DM, Goll J, Murphy S, Kumar P, Zafar N, et al. The JCVI standard operating procedure for annotating prokaryotic metagenomic shotgun sequencing data. Stand Genomic Sci. 2010;2:229–37. doi:10.4056/sigs.651139.PubMedCentralPubMedCrossRefGoogle Scholar
  20. White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5:e1000352. doi:10.1371/journal.pcbi.1000352.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Wu M, Eisen JA. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 2008;9:R151. doi:10.1186/gb-2008-9-10-r151.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Informatics DepartmentThe J. Craig Venter InstituteRockvilleUSA