Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Human Oral Microbiome Database (HOMD)

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_13-5


The human oral cavity is a rich biological site with several microbial niches including teeth, gingival sulcus, tongue, cheek, hard and soft palates, tonsils, throat, and saliva. The microbiome of the oral cavity (Dewhirst et al. 2010) and its niches have been examined based on 16S rRNA sequencing (Aas et al. 2005; Bik et al. 2010; Human Microbiome Project 2012). The metagenome of the oral cavity has been studied to a limited degree prior to 2012 due to the complexity of the site (Alcaraz et al. 2012; Belda-Ferre et al. 2012; Xie et al. 2010). More than 700 prevalent species comprise the oral microbiome, but many taxa are present at less than 0.1 % of the microbial population (Dewhirst et al. 2010). As oral bacterial reference genomes are becoming available, primarily through the efforts of the Human Microbiome Project (Human Microbiome Project 2012), it is becoming possible to attribute metagenomic sequences to organisms at genus and species level (Martin et al. 2012)....


Query Sequence Human Microbiome Project NCBI Taxonomy Genome Viewer Subject Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Aas JA, et al. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721–32.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alcaraz LD, et al. Identifying a healthy oral microbiome through metagenomics. Clin Microbiol Infect. 2012;18 Suppl 4:54–7.PubMedCrossRefGoogle Scholar
  3. Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ashburner M, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.PubMedCentralPubMedGoogle Scholar
  5. Bairoch A. The ENZYME database in 2000. Nucleic Acids Res. 2000;28:304–5.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Belda-Ferre P, et al. The oral metagenome in health and disease. ISME J. 2012;6:46–56.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bik EM, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4:962–74.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Boeckmann B, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003;31:365–70.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Camacho C, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Camon E, et al. The Gene Ontology Annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res. 2003;13:662–72.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chen T, et al. The bioinformatics resource for oral pathogens. Nucleic Acids Res. 2005;33:W734–40.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chen T, et al. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford). 2010;2010:baq013.CrossRefGoogle Scholar
  13. Dewhirst FE, et al. The human oral microbiome. J Bacteriol. 2010;192:5002–17.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dzink JL, et al. Gram negative species associated with active destructive periodontal lesions. J Clin Periodontol. 1985;12:648–59.PubMedCrossRefGoogle Scholar
  15. Dzink JL, et al. The predominant cultivable microbiota of active and inactive lesions of destructive periodontal diseases. J Clin Periodontol. 1988;15:316–23.PubMedCrossRefGoogle Scholar
  16. Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012a;486:215–21.CrossRefGoogle Scholar
  17. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012b;486:207–14.CrossRefGoogle Scholar
  18. Kanehisa M. The KEGG database. Novartis Found Symp. 2002;247:91–101. discussion 101–103, 119–128, 244–152.PubMedCrossRefGoogle Scholar
  19. Martin J, et al. Optimizing read mapping to reference genomes to determine composition and species prevalence in microbial communities. PLoS One. 2012;7:e36427.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Moore WE, Moore LV. The bacteria of periodontal diseases. Periodontol. 1994;2000(5):66–77.CrossRefGoogle Scholar
  21. Moore WE, et al. Bacteriology of severe periodontitis in young adult humans. Infect Immun. 1982;38:1137–48.PubMedCentralPubMedGoogle Scholar
  22. Moore WE, et al. Bacteriology of moderate (chronic) periodontitis in mature adult humans. Infect Immun. 1983;42:510–5.PubMedCentralPubMedGoogle Scholar
  23. Morgulis A, et al. Database indexing for production MegaBLAST searches. Bioinformatics. 2008;24:1757–64.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Paster BJ, Dewhirst FE. Phylogeny of campylobacters, wolinellas, Bacteroides gracilis, and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int J Syst Bacteriol. 1988;38:56–62.CrossRefGoogle Scholar
  25. Socransky SS, Haffajee AD. Evidence of bacterial etiology: a historical perspective. Periodontology. 1994;5:7–25.CrossRefGoogle Scholar
  26. Tanner AC, et al. A study of the bacteria associated with advancing periodontitis in man. J Clin Periodontol. 1979;6:278–307.PubMedCrossRefGoogle Scholar
  27. Tanner A, et al. Microbiota of health, gingivitis, and initial periodontitis. J Clin Periodontol. 1998;25:85–98.PubMedCrossRefGoogle Scholar
  28. The Forsyth Metagenomic Support Consortium, Izard J. Building the genomic base-layer of the oral “omic” world. In: Sasano T, Suzuki O, editors. Interface oral health science 2009: proceedings of the 3rd international symposium for interface oral health science. New York: Springer; 2010.Google Scholar
  29. Xie G, et al. Community and gene composition of a human dental plaque microbiota obtained by metagenomic sequencing. Mol Oral Microbiol. 2010;25:391–405.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Zdobnov EM, Apweiler R. InterProScan – an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17:847–8.PubMedCrossRefGoogle Scholar
  31. Zuger J, et al. Uncultivated Tannerella BU045 and BU063 are slim segmented filamentous rods of high prevalence but low abundance in inflammatory disease-associated dental plaques. Microbiology. 2007;153:3809–16.PubMedCrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of MicrobiologyThe Forsyth InstituteCambridgeUSA
  2. 2.Department of Molecular GeneticsThe Forsyth InstituteCambridgeUSA