Transportation Technologies for Sustainability

2013 Edition
| Editors: Mehrdad Ehsani, Fei-Yue Wang, Gary L. Brosch

Driver Inattention Monitoring System for Intelligent Vehicles

Reference work entry

Definition of the Subject

Driver inattention is a major factor in highway crashes. The National Highway Traffic Safety Administration (NHTSA) estimates that approximately 25% of police-reported crashes involve some forms of driver inattention – the driver is distracted, asleep or fatigued, or otherwise “lost in thought” [ 1]. This entry reviews the state-of-the-art technologies for monitoring driver inattention, which can be classified into two main categories: distraction and fatigue. Driver inattention is a major factor in most traffic accidents. Research and development has been actively carried out for decades with the goal of precisely determining the drivers’ state of mind. This entry summarizes these approaches by dividing them into five different types of measures:
  1. 1.

    Subjective report measures

  2. 2.

    Driver biological measures

  3. 3.

    Driver physical measures

  4. 4.

    Driving performance measures

  5. 5.

    Hybrid measures


Among these approaches, subjective report measures and driver...

This is a preview of subscription content, log in to check access.


  1. 1.
    Ranney TA, Mazzae E, Garrott R, Goodman MJ (2000) Nhtsa driver distraction research: past, present, and future. Technical report, Transportation Research Center IncGoogle Scholar
  2. 2.
    Lee JD, Young KL, Regon MA (2009) Driver distraction:. CRC Press/Taylor & Francis Group, LondonGoogle Scholar
  3. 3.
    Stutts JC, Reinfurt DW, Staplin L, Rodgman EA (2001) The role of driver distraction in traffic crashes. Technical report, American Automobile Association AAA Foundation for Traffic SafetyGoogle Scholar
  4. 4.
    S.S.G. on Fatigue (2006) Canadian operational definition of driver fatigue. Technical report, STRID Sub-Group on FatigueGoogle Scholar
  5. 5.
    Brill JC, Hancock PA, Gilson RD (2003) Driver fatigue: is something missing? In: Proceedings of the second international driving symposium on human factors in driver assessment, training and vehicle design, Park City, pp 138–142Google Scholar
  6. 6.
    T.R.S. for the Prevention of Accidents (2001) Driver fatigue and road accidents: a literature review and position paper. Technical report, The Royal Society for the Prevention of AccidentsGoogle Scholar
  7. 7.
    Croo HD, Bandmann M, Mackay GM, Rumar K, Vollenhoven P (2001) The role of driver fatigue in commercial road transport crashes. Technical report, European Transport Safety CouncilGoogle Scholar
  8. 8.
    Horne J, Reyner L (1999) Vehicle accidents related to sleep: a review. Occup Environ Med 56(5):289–294Google Scholar
  9. 9.
    Nilson T, Nelson TM, Carlson D (1997) Accid Anal Prev 29(4):479CrossRefGoogle Scholar
  10. 10.
    Endsley MR (1995) Hum Factors 37(1):32CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Angell L, Auflick J, Austria A, Kochhar D, Tijerina L, Biever W, Diptiman T, Hogsett J, Kiger S (2006) Driver workload metrics project-task 2 final report. Technical report, U.S. Dept. of Transportation National Highway Traffic Safety AdministrationGoogle Scholar
  13. 13.
    Harbluk JL, Noy YI, Trbovich PL, Eizenman M (2007) Accid Anal Prev 39:372CrossRefGoogle Scholar
  14. 14.
    Rantanen EM, Goldberg JH (1999) The effect of mental workload on the visual field size and shape. Ergonom 42(6):816–834CrossRefGoogle Scholar
  15. 15.
    Harbluk JL, Noy YI (2002) The impact of cognitive distraction on driver visual behaviour and vehicle control. Technical report, Ergonomics Division, Road Safety Directorate and Motor Vehicle Regulation DirectorateGoogle Scholar
  16. 16.
    Hayhoe MM (2004) Infancy 6(2):267Google Scholar
  17. 17.
    May JG, Kennedy RS, Williams MC, Dunlap WP, Brannan JR (1990) Acta Psychol 75(1):75CrossRefGoogle Scholar
  18. 18.
    Miyaji M, Kawanaka H, Oguri K (2009) Driver’s cognitive distraction detection using physiological features by the adaboost. In: Proceedings of the 12th international IEEE conference on intelligent transportation systems, St. Louis, 2009Google Scholar
  19. 19.
    Liang Y, Lee JD (2010) Accid Anal Prev 42:881CrossRefGoogle Scholar
  20. 20.
    Zhang H, Smith M, Dufour R (2008) A final report of safety vehicles using adaptive interface technology (phase ii: Task 7c): visual distraction. Technical report, Delphi Electronics and SafetyGoogle Scholar
  21. 21.
    Itoh M (2009) Individual differences in effects of secondary cognitive activity during driving on temperature at the nose tip. In: Proceedings of the 2009 IEEE International conference on mechatronics and automation, Changchun, China, 2009CrossRefGoogle Scholar
  22. 22.
    Wesley A, Shastri D, Pavlidis I (2010) A novel method to monitor driver’s distractions. In: Proceedings of the 28th of the international conference extended abstracts on human factors in computing systems CHI EA 10 (2010), Atlanta, 2010Google Scholar
  23. 23.
    Berka C, Levendowski DJ, Lumicao MN, Yau A, Davis G, Zivkovic VT, Olmstead RE, Tremoulet PD, Craven PL (2007) Aviat Space Environ Med 78(5):B231Google Scholar
  24. 24.
    Ranney TA (2008) Driver distraction: a review of the current state-of-knowledge. Technical report, NHTSAGoogle Scholar
  25. 25.
    Zhou H, Itoh M, Inagaki T (2008) Influence of cognitively distracting activity on driver’s eye movement during preparation of changing lanes. In: SICE annual conference, Tokyo, 2008Google Scholar
  26. 26.
    Carsten OMJ, Brookhuis K (2005) Transp Res Part F: Traffic Psychol Behav 8:191CrossRefGoogle Scholar
  27. 27.
    Eskandarian A, Sayed R, Delaigue P, Blum J, Mortazavi A (2007) Advanced driver fatigue research. Technical report, Report No. FMCSA-RRR-07-001. U.S. Department of Transportation Federal Motor Carrier Safety AdministrationGoogle Scholar
  28. 28.
    Dinges DF, Richard G (1998) Perclos: a valid psychophysiological measure of alertness as assessed by psychomotor vigilance. Technical report, Federal Highway Administration, Office of Motor CarriersGoogle Scholar
  29. 29.
    Svensson U, (2004) Electrooculogram analysis and development of a system for defining stages of drowsiness. Master’s thesis, Department of Biomedical Engineering, Linkoping University, SwedenGoogle Scholar
  30. 30.
    Hulbert S (1972) Effects of driver fatigue. In: Forbes TW (ed) Human factors in highway traffic safety research. Wiley-Interscience, New YorkGoogle Scholar
  31. 31.
    Mast T, Jones H, Heimstra N (1989) Effects of fatigue on performance in a driving device. Highway research record. Technical report, Driver Fatigue Research: Development of Methodology, Haworth, Vulcan, Triggs, and Fildes (eds) Accident Research Center, Monash University AustraliaGoogle Scholar
  32. 32.
    Kahneman D (1973) Attention and effort. Technical report, Prentice Hall, Englewood CliffsGoogle Scholar
  33. 33.
    Yabuta K, Iizuka H, Yanagishima T, Kataoka Y, Seno T (1985) The development of drowsiness warning devices. In: Proceedings of the 10th International technical Conference on Experimental Safety Vehicles, Washington, DCGoogle Scholar
  34. 34.
    Dingus TA, Hardee L, Wierwille WW (1985) Development of impaired driver detection measures. Technical report, Department of Industrial Engineering and Operations Research, Virginia Polytechnic Institute and State University, (Departmental Report 8504), BlacksburgGoogle Scholar
  35. 35.
    Elling M, Sherman P (1994) Evaluation of steering wheel measures for drowsy drivers. In 27th ISATA, Aachen, GermanyGoogle Scholar
  36. 36.
    Zhong YJ, Du LP, Zhang K, Sun XH (2007) Wavelet Anal Pattern Recognit 4:1843CrossRefGoogle Scholar
  37. 37.
    Skipper JH, Wierwille W, Hardee L (1984) An investigation of low level stimulus induced measures of driver drowsiness. Technical report, Virginia Polytechnic Institute and State University IEOR Department Report No.8402, BlacksburgGoogle Scholar
  38. 38.
    Stein AC (1995) Detecting fatigued drivers with vehicle simulators. Technical report, Drive r Impairment, Driver Fatigue and Driving Simulation, Hartley L (ed) Taylor & Francis, Bristol, pp 133–150Google Scholar
  39. 39.
    Safford R, Rockwell TH (1967) Highway Res Record 163:68Google Scholar
  40. 40.
    Riemersama JB, Sanders AF, Wildervack C, Gaillard AW (1977) Performance decrement during prolonged night driving. Technical report, Vigilance: Theory, Operational Performance and Physiological Correlates, Makie RR (ed) Plenum Press, New YorkGoogle Scholar
  41. 41.
  42. 42.
    Nabo A (2009) Driver attention – dealing with drowsiness and distraction. Technical report, Saab Automobile ABGoogle Scholar
  43. 43.
  44. 44.
  45. 45.
  46. 46.
  47. 47.
    Barr L, Popkin S, Howarth H (2009) An evaluation of emerging driver fatigue detection measures and technologies. Technical report, Volpe National Transportation Systems CenterGoogle Scholar
  48. 48.
  49. 49.
  50. 50.
    Bergasa L, Nuevo J, Sotelo M, Barea R, Lopez E (2006) IEEE Trans Intell Transp Syst 7(1):63CrossRefGoogle Scholar
  51. 51.
    Liang Y, Reyes ML, Lee JD (2007) IEEE Trans Intell Transp Syst 8(2):340CrossRefGoogle Scholar
  52. 52.
    Freund Y, Schapire RE (1997) J Comput Syst Sci 55:119MathSciNetCrossRefGoogle Scholar
  53. 53.
    Lee J, Reyes M, Liang Y, Lee YC (2007) Safety vehicles using adaptive interface technology (task 5): algorithms to assess cognitive distraction. Technical report, The University of IowaGoogle Scholar
  54. 54.
    Sathyanarayana A, Boyraz P, Hansen JHL (2008) Driver behavior analysis and route recognition by hidden markov models. In: Proceedings of the 2008 IEEE international conference on vehicular electronics and safety, Columbus, 2008Google Scholar
  55. 55.
    Kaida K, Takahashi M, Akerstedt T, Nakata A, Otsuka Y, Haratani T, Fukasawa K (2006) Clin Neurophysiol 117(7):1574CrossRefGoogle Scholar
  56. 56.
    Ingre M, Akerstedt T, Peters B, Anund A, Kecklund G (2006) J Sleep Res 15(1):47CrossRefGoogle Scholar
  57. 57.
    Craig A, Tran Y, Wijesuriya N, Boord P (2006) Biol Psychol 72:78CrossRefGoogle Scholar
  58. 58.
    Jap BT, Lal S, Fischer P, Bekiaris E (2009) Expert SystAppl 36(2):2352CrossRefGoogle Scholar
  59. 59.
    Chouvarda I, Papadelis C, Papadeli CK, Bamidis PD, Koufogiannis D, Bekiaris E, Maglaveras N (2007) Medinfo 12(2):1294Google Scholar
  60. 60.
    Yeo MVM, Li XP, Shen K, Smith EPW (2009) Safety Sci 47(1):115CrossRefGoogle Scholar
  61. 61.
    Shen KQ, Li XP, Ong CJ, Shao SY, Smith EPW (2008) Clin Neurophysiol 119:1524CrossRefGoogle Scholar
  62. 62.
    Lin CT, Wu RC, Liang SF, Chao WH, Chen YJ, Jung TP (2005) Circuits and systems I: regular papers, IEEE Trans 52(12):2726Google Scholar
  63. 63.
    Lin CT, Chen YC, Huang TY, Chiu TT, Ko LW, Liang SF, Hsieh HY, Hsu SH, Duann JR (2008) Biomed Eng IEEE Trans 55((5):1582CrossRefGoogle Scholar
  64. 64.
    Liu J, Zhang C, Zheng C (2010) Biomed Signal Process Control 5:124CrossRefGoogle Scholar
  65. 65.
    Skinner BT, Nguyen HT, Liu DK (2007) Classification of eeg signals using a genetic-based machine learning classifier. In: 29th annual international conference of the IEEE, Lyon. Engineering in Medicine and Biology Society, pp 3120–3123Google Scholar
  66. 66.
    Yang G, Lin Y, Bhattacharya P (2010) Inf Sci 180:1942CrossRefGoogle Scholar
  67. 67.
    Chua CP, McDarby G, Heneghan C (2008) Physiol Meas 29(8):857CrossRefGoogle Scholar
  68. 68.
    Damousis IG, Tzovaras D (2008) Intell Transp Syst IEEE Trans 9(3):491CrossRefGoogle Scholar
  69. 69.
    Shuyan H, Gangtie Z (2009) Expert Syst Appl 36:7651CrossRefGoogle Scholar
  70. 70.
    Balasubramanian V, Adalarasu K (2007) J Bodyw Mov Ther 11:151CrossRefGoogle Scholar
  71. 71.
    Katsis CD, Ntouvas NE, Bafas CG, Fotiadis DI (2004) Assessment of muscle fatigue during driving using surface emg. In: Proceedings of the IASTED international conference on biomedical engineering, Article, Innsbruck, pp 259–262Google Scholar
  72. 72.
    Fan X, Sun Y, Yin B, Guo X (2010) Pattern Recognit Lett 31:234CrossRefGoogle Scholar
  73. 73.
    Friedrichs F, Yang B (2010) Camera-based drowsiness reference for driver state classification under real driving conditions. In: 2010 IEEE intelligent vehicles symposium, San Diego, 2010Google Scholar
  74. 74.
    Pudil P, Ferrii FJ (1994) Floating search methods for feature selection with nonmonotonic criterion functions. In: Proceedings of the 12th international conference on pattern recognition, IAPR, Jerusalem, 1994Google Scholar
  75. 75.
    Sun XH, Xu L, Yang JY (2007) In: MIPPR 2007: automatic target recognition and image analysis; and multispectral image acquisitionGoogle Scholar
  76. 76.
    Orazio TD, Leo M, Guaragnella C, Distante A (2007) Pattern Recognit 40(8):2341CrossRefGoogle Scholar
  77. 77.
    Suzuki M, Yamamoto N, Yamamoto O, Nakano T, Yamamoto S (2006) Systems, Man Cybern 4:2891Google Scholar
  78. 78.
    Senaratne R, Hardy D, Vander B, Halgamuge S (2007) Lect Notes Comput Sci 4492:801CrossRefGoogle Scholar
  79. 79.
    Rongben W, Lie G, Bingliang T, Lisheng J (2004) Monitoring mouth movement for driver fatigue or distraction with one camera. In: IEEE 7th conference on intelligent transportation systems, pp 314–319Google Scholar
  80. 80.
    Fan X, Yin BC, Sun YF (2007) Mach Learn Cybern 2:664Google Scholar
  81. 81.
    Vural E, Cetin M, Ercil A, Littlewort G, Bartlett M, Movellan J (2007) Drowsy driver detection through facial movement analysis. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  82. 82.
    Kircher K, Ahlstrom C, Kircher A (2009) Comparison of two eye gaze based real-time driver distraction detection algorithms in a small-scale field operational test. In: Proceedings of the fifth international driving symposium on human factors in driver assessment, training and vehicle design, Big Sky, 2009Google Scholar
  83. 83.
    Pohl J, Birk W, Westervall L (2007) J Syst Control Eng 221(14)):541Google Scholar
  84. 84.
    Bergasa LM, Buenaposada JM, Nuevo J, Jimenez P, Baumela L (2008) Analysing driver’s attention level using computer vision. In: 11th international IEEE conference on intelligent transportation systems, BeijingGoogle Scholar
  85. 85.
    Furugori S, Yoshizawa N, Iname C, Miura Y (2005) Rev Automot Eng 26(1):53Google Scholar
  86. 86.
    Farid M, Kopf M, Bubb H, Essaili A (2006) Safety Lit 1960:639Google Scholar
  87. 87.
    Takei Y, Furukawa Y (2005) IEEE international conference on systems, Man Cybern 2:1765Google Scholar
  88. 88.
    Wakita T, Ozawa K, Miyajima C, Igarashi K, Itou K, Takeda K, Itakura F (2006) IEICE Trans Inf Syst E89-D(3):1188CrossRefGoogle Scholar
  89. 89.
    Torkkola K, Massey N, Wood C (2004) Driver inattention detection through intelligent analysis of readily available sensors. In: The 7th international IEEE conference on intelligent transportation systems, Washington, DC, 2004Google Scholar
  90. 90.
    Breiman L (2001) Random forests. Technical report, University of Califomia, BerkeleyGoogle Scholar
  91. 91.
    Ersal T, Fuller HJA, Tsimhoni O, Stein JL, Fathy HK (2010) Model-based analysis and classification of driver distraction under secondary tasks. IEEE transactions on intelligent transportation systems 11(3):692–701Google Scholar
  92. 92.
    Sathyanarayana A, Nageswaren S, Ghasemzadeh H, Jafari R, Hansen JHL (2008) Body sensor networks for driver distraction identification. In: IEEE international conference on vehicular electronics and safety (ICVES), Columbus, 2008CrossRefGoogle Scholar
  93. 93.
    Sathyanarayana A, Boyraz P, Hansen JHL (2011) Information fusion for robust ‘context and driver aware’ active vehicle safety systems. Inf Fusion 12(4):293–303Google Scholar
  94. 94.
    Doshi A, Trivedi M (2009) Investigating the relationships between gaze patterns, dynamic vehicle surround analysis, and driver intentions. In: Intelligent vehicles symposium. IEEE, Xi’anCrossRefGoogle Scholar
  95. 95.
    Weller G, Schlag B (2009) In: European conference on human centred design for intelligent transport systemsGoogle Scholar
  96. 96.
    Markkula G, Kutila M (2005) Online detection of driver distraction – preliminary results from the aide project. In: Proceedings of the 2005 international truck and bus safety and security symposium, Virginia, pp 86–96Google Scholar
  97. 97.
    Tango F, Calefato C, Minin L, Canovi L (2009) Moving attention from the road: a new methodology for the driver distraction evaluation using machine learning approaches. In: HSI 2009, CataniaGoogle Scholar
  98. 98.
    Fletcher L, Zelinsky A (2007) Driver state monitoring to mitigate distraction. Technical report. In: Faulks IJ, Regan M, Stevenson M, Brown J, Porter A, Irwin JD (eds) Distracted driving. Sydney, NSW: Australasian College of Road Safety pp 487–523Google Scholar
  99. 99.
    Tran C, Trivedi MM (2010) Towards a vision-based system exploring 3d driver posture dynamics for driver assistance: issues and possibilities. In: 2010 IEEE intelligent vehicles symposium, San Diego, 2010Google Scholar
  100. 100.
    Land MF, Lee DN (1994) Nature 369:742CrossRefGoogle Scholar
  101. 101.
    Apostoloff N, Zelinsky A (2003) Int J Robot Res 5:28Google Scholar
  102. 102.
    Brandt T, Stemmer R, Rakotonirainy A (2004) IEEE Int Conf Syst Man Cybern 17:6451Google Scholar
  103. 103.
    Eren H, Celik U, Poyraz M (2007) Stereo vision and statistical based behavior prediction of driver. In: Proceedings of IEEE intelligent vehicles symposium, Istanbul, 2007Google Scholar
  104. 104.
    Su MC, Hsiung CY, Huang DY (2006) Syst Man Cybern 1:429Google Scholar
  105. 105.
    Ji Q, Yang XJ (2002) Real-Time Imaging 8:357CrossRefGoogle Scholar
  106. 106.
    Cudalbu C, Anastasiu B, Radu R, Cruceanu R, Schmidt E, Barth E (2005) Signals Circuits Syst 1:219Google Scholar
  107. 107.
    Huang H, Zhou YS, Zhang F, Liu FC (2007) Wavelet Anal Pattern Recognit 3:1144CrossRefGoogle Scholar
  108. 108.
    Zhu ZW, Fujimura K, Ji Q (2007) Data Sci J 6:636CrossRefGoogle Scholar
  109. 109.
    Schmidt EA, Schrauf M, Simona M, Fritzsche M, Buchnerb A, Kincsesa WE (2009) Accid Anal Prev 41:1087CrossRefGoogle Scholar
  110. 110.
    Bouchner P (2006) WSEAS Trans Syst 5(1):84Google Scholar
  111. 111.
    Dong Y, Hu Z, Uchimura K, Murayama N (2010) A robust and efficient face tracking kernel for driver inattention monitoring system. In: Intelligent vehicles symposium (IV), 2010 IEEGoogle Scholar
  112. 112.
    Klauer SG, Dingus TA, Neale VL, Sudweeks JD, Ramsey DJ (2006) The impact of driver inattention on near-crash/crash risk: An analysis using the 100-car naturalistic driving study data. Technical report, National Highway Traffic Safety Administration, Washington, DCGoogle Scholar
  113. 113.
    Horne JA, Reyner LA (1995) Br Med J 310(6979):565CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan
  2. 2.Graduate School of Science and Technology, Computer Science DepartmentKumamoto UniversityKumamotoJapan