Transportation Technologies for Sustainability

2013 Edition
| Editors: Mehrdad Ehsani, Fei-Yue Wang, Gary L. Brosch

Dynamic Environment Sensing Using an Intelligent Vehicle

  • Huijing Zhao
  • Long Xiong
  • Yiming Liu
  • Xiaolong Zhu
  • Yipu Zhao
  • Hongbin Zha
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-5844-9_482

Definition of the Subject and Its Importance

There have been numerous research efforts toward generating 2D/3D urban models using mobile robots . In addition, research has focused on robot-centric mapping and moving object detection/tracking for online perception and navigation. However, to date, there has been little work on generating a realistic 3D copy of a dynamic environment that describes the state of both static and dynamic objects at the moment. Toward the goal of developing omni-directional range sensing in a dynamic urban scene using an intelligent vehicle, research has mainly focused on the fundamental issues of multi-laser sensor system calibration and scene understanding in contextual map generation. Here, both system and algorithmic development are presented as well as experimental research demonstrating that a geometric and contextual representation of static objects such as buildings, trees, and roads, as well as the motion of dynamic entities such as people,...

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    International Society of Photogrammetry and Remote Sensing. http://www.isprs.org/
  2. 2.
    Collins R, Hanson A, Riseman E (1994) Site model acquisition under the UMass RADIUS project. In: Proceedings of arpa image understanding workshop, Monterey, CA, pp 351–358Google Scholar
  3. 3.
    Gruen A (1998) TOBAGO – a semi-automated approach for the generation of 3-D building models. ISPRS J Photogramm Remote Sens 53(2):108–118CrossRefGoogle Scholar
  4. 4.
    Forstner W (1999) 3D-city models: automatic and semiautomatic acquisition methods. In: Proceedings photogrammetric week, University of Stuttgart, Institute for photogrammetry, pp 291–303Google Scholar
  5. 5.
    Shiode N (2001) 3D urban model: recent developments in the digital modeling of urban environments in three-dimensions. GeoJournal 52(3):263–269CrossRefGoogle Scholar
  6. 6.
    Ellum C, El-Sheimy N (2000) The development of a backpack mobile mapping system. Int Arch Photogramm Remote Sensing XXXII(B2):184–191, AmsterdamGoogle Scholar
  7. 7.
    He G, Orvets G (2000) Capturing road network data using mobile mapping technology. Int Arch Photogramm Remote Sensing XXXIII(B2):272–277, AmsterdamGoogle Scholar
  8. 8.
    Silva JFC, Camargo PO, Oliveira RA (2000) A street map built by a mobile mapping system. Int Arch Photogramm Remote Sensing XXXIII(B2):510–517, AmsterdamGoogle Scholar
  9. 9.
    El-Sheimy N (2000) Mobile multi-sensor systems: the new trend in mapping and GIS applications. IAG J Geodesy, vol. 121, Geodesy beyond 2000: the challenges of the first decade. Springer, Berlin/Heidelberg, pp 319–324Google Scholar
  10. 10.
    Li R (1997) Mobile mapping: an emerging technology for spatial data acquisition. Photogramm Eng Remote Sens 63(9):1085–1092Google Scholar
  11. 11.
    Früh C, Zakhor A (2004) An automated method for large-scale, ground-based city model acquisition. Int J Comput Vis 60(1):5–24CrossRefGoogle Scholar
  12. 12.
    Ikeuchi K, Sakauchi M, Kawasaki H, Sato I (2004) Constructing virtual cities by using panoramic images. Int J Comput Vis 53(3):237–247CrossRefGoogle Scholar
  13. 13.
    Zhao H, Shibasaki R (2003) Special issue on computer vision system: reconstructing textured CAD model of urban environment using vehicle-borne laser range scanners and line cameras. Mach Vis Appl 14(1):35–41CrossRefGoogle Scholar
  14. 14.
    Google Earth (2004) http://earth.google.com
  15. 15.
    Microsoft Virtual Earth (2006) http://www.microsoft.com/virtualearth
  16. 16.
  17. 17.
    StreetMapper (2007) http://www.streetmapper.net
  18. 18.
    City Grid (2006) http://www.cybercity.tv
  19. 19.
    Cyber City (2007) http://www.cybercity.tv
  20. 20.
    Hu J, You S, Neumann U (2003) Approaches to large-scale urban modeling. IEEE Comput Graph Appl 23(6):62–69CrossRefGoogle Scholar
  21. 21.
    Thrun S (2002) Robotic mapping: a survey. CMU-CS-02-11Google Scholar
  22. 22.
    DARPA (2004) DARPA grand challenge rulebook. http://www.darpa.mil/grandchallenge05/Rules_8oct04.pdf
  23. 23.
  24. 24.
    Journal of Field Robotics: Special issue on the 2007 DARPA urban challenge, Part I 25(8)Google Scholar
  25. 25.
    Journal of Field Robotics: Special issue on the 2007 DARPA urban challenge, Part II 25(9)Google Scholar
  26. 26.
    Nuchter A, Lingemann K, Hertzberg J, Surmann H (2007) 6D SLAM – 3D mapping outdoor environments. J Field Robot 24(8/9):699–722MATHCrossRefGoogle Scholar
  27. 27.
    Zhao H, Shibasaki R (2003) A vehicle-borne urban 3D acquisition system using single-row laser range scanners. IEEE Trans SMC Part B: Cybern 33–4:658–666Google Scholar
  28. 28.
    Allen P, Atamos I, Gueorguiev A, Gold E, Blaer P (2001) AVENUE: automated site modeling in urban environments. In: Proceedings of the 3rd international conference on 3D digital imaging and modeling, Quebec City, pp 357–364CrossRefGoogle Scholar
  29. 29.
    Georgiev A, Allen PK (2004) Localization methods for a mobile robot in urban environments. IEEE Trans Robot Automat (TRO) 20(5):851–864CrossRefGoogle Scholar
  30. 30.
    Hahnel D, Burgard W, Fox D, Thrun S (2003) An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, Las Vegas, pp 206–211Google Scholar
  31. 31.
    Wang CC (2004) Simultaneous localization, mapping and moving object tracking. PhD dissertation, Carnegie Mellon University, CMU-RI-TR-04-23Google Scholar
  32. 32.
    Vu T, Aycard O, Appenrodt N (2007) Online localization and mapping with moving object tracking in dynamic outdoor environment. In: Proceedings IEEE intelligent vehicle symposium, Istanbul, pp 190–195Google Scholar
  33. 33.
    Weiss T, Schiele B, Dietmayer K (2007) Robust driving path detection in urban and highway scenarios using a laser scanner and online occupancy grids. In: Proceedings of the IEEE intelligent vehicle symposium, Istanbul, pp 184–189Google Scholar
  34. 34.
    Zhao H, Chiba M, Shibasaki R, Shao X, Cui J, Zha H (2008) SLAM in a dynamic large outdoor environment using a laser scanner. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Pasadena, CA, pp 1455–1462Google Scholar
  35. 35.
  36. 36.
    SICK LMS2** (2001) http://www.sick.com
  37. 37.
    Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: Part I. IEEE Rob Autom Mag 13(2):99–108CrossRefGoogle Scholar
  38. 38.
    Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping: Part II. IEEE Rob Autom Mag 13(3):108–117CrossRefGoogle Scholar
  39. 39.
    Streller D, Dietmayer K (2004) Object tracking and classification using a multiple hypothesis approach. In: Proceedings of the IEEE intelligent vehicles symposium, Parma, pp 808–812Google Scholar
  40. 40.
    Fayad F, Cherfaoui V (2007) Tracking objects using a laser scanner in driving situation based on modeling target shape. In: Proceedings of the IEEE intelligent vehicle symposium, Istanbul, pp 44–49Google Scholar
  41. 41.
    Zhao H, Liu Y, Zhu X, Zhao Y, Zha H (2010) Scene understanding in a large dynamic environment through a laser-based sensing.In: IEEE international conference on robotics and automation, Anchorage, pp 127–133Google Scholar
  42. 42.
    Zhao H, Xiong L, Jiao Z, Cui J, Zha H (2009) Sensor alignment towards an omni-directional measurement using an intelligent vehicle. In: Proceedings of the IEEE intelligent vehicle symposium, Kobe, pp 292–298Google Scholar
  43. 43.
    Zhao H, Shibasaki R (2001) High accurate positioning and mapping in urban area using laser range scanner. In: Proceedings of IEEE intelligent vehicles symposium, Tokyo, pp 125–132Google Scholar
  44. 44.
    Zhao H, Chiba M, Shibasaki R, Shao X, Cui J, Zha H (2009) A laser scanner based approach towards driving safety and traffic data collection. IEEE Trans Intell Transport Syst 10(3):534–546CrossRefGoogle Scholar
  45. 45.
    Cheok GS, Leigh S, Rukhin A (2002) Calibration experiments of a laser scanners. NISTIR 6922:121Google Scholar
  46. 46.
    Santala J, Joala V (2003) On the calibration of a ground-based laser scanner. TS12.4, FIG working weekGoogle Scholar
  47. 47.
    Mahlisch M, Hering R, Ritter W, Dietmayer K (2006) Heterogeneous fusion of video, Lidar, ESP data for automotive ACC vehicle tracking. In: Proceedings of IEEE international conference on multisensor fusion and integration for intelligent systems, Heidelberg, pp 139–144Google Scholar
  48. 48.
    Rodriguez F, Sergio A, Fremont V, Bonnifait P (2008) Extrinsic calibration between a multi-layer LIDAR and a camera. In: Proceedings of IEEE international conference on multisensor fusion and integration for intelligent systems, Seoul, pp 214–219Google Scholar
  49. 49.
    Zhao H, Chen Y, Shibasaki R (2007) An efficient extrinsic calibration of a multiple laser scanners and cameras’ sensor system on a mobile platform. In: IEEE intelligent vehicles symposium, Istanbul, pp 422–427Google Scholar
  50. 50.
    Gao C, Spletzer JR (2010) On-line calibration of multiple LIDARs on a mobile vehicle platform. In: Proceedings of IEEE international conference on robotics and automation, Anchorage, pp 279–284Google Scholar
  51. 51.
    Besl PJ, McKay ND (1992) A method for registration of 3-D shape. IEEE Trans Pattern Anal Mach Intell 14:239–256CrossRefGoogle Scholar
  52. 52.
    Chen Y, Medion G (1992) Object modeling by registration of multiple range images. Image Vis Comput 10(3):145–155CrossRefGoogle Scholar
  53. 53.
    Zhang Z (1994) Iterative point matching for registration of a free-from curves and surfaces. Int J Comput Vis 13:119–152CrossRefGoogle Scholar
  54. 54.
    Hahnel D, Burgard W, Thrun S (2003) Learning compact 3d models of indoor and outdoor environments with a mobile robot. Rob Autom Syst 44:15–27CrossRefGoogle Scholar
  55. 55.
    Althaus P, Christensen H (2003) Behavior coordination in structured environments. Adv Robot 17(7):657–674CrossRefGoogle Scholar
  56. 56.
    Mendes A, Nunes U (2004) Situation-based multi-target detection and tracking with laserscanner in outdoor semi-structured environment. In: Proceedings IEEE/RSJ international conference on intelligent robots and systems, SendaiCrossRefGoogle Scholar
  57. 57.
    Posner I, Cummins M, Newman P (2008) Online generation of scene descriptions in urban environments. Rob Autom Syst 56(11):901–914CrossRefGoogle Scholar
  58. 58.
    Douillard B (2009) Vision and laser based classification in urban environments. PhD thesis, University of SydneyGoogle Scholar
  59. 59.
    Nuchter A, Lingemann K, Hertzberg J, Surmann H (2009) 6D SLAM – 3D mapping outdoor environments. J Field Robot 24(8–9):699–722MATHCrossRefGoogle Scholar
  60. 60.
    Martinez-Mozos O, Stachniss C, Burgard W (2005) Supervised learning of places from range data using AdaBoost. In: IEEE international conference on robotics and automation (ICRA), Barcelona, pp 1742–1747Google Scholar
  61. 61.
    Triebel R, Kersting K, Burgard W (2006) Robust 3D scan point classification using associative Markov networks. In: IEEE international conference on robotics and automation (ICRA), Orlando, FLGoogle Scholar
  62. 62.
    Douillard B, Fox D, Ramos FT (2008) Laser and vision based outdoor object mapping. In: Proceedings of robotics: science and systems, ZurichGoogle Scholar
  63. 63.
    Posner I, Cummins M, Newman P (2009) A generative framework for fast urban labeling using spatial and temporal context. Auton Robot 26(2–3):153–170CrossRefGoogle Scholar
  64. 64.
    Hoover A, Jean-Baptiste G, Jiang X, Flynn PJ, Bunke H, Goldgof D, Bowyer K (1996) A comparison of range image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 18(7):673–689CrossRefGoogle Scholar
  65. 65.
    Katsoulas D, Bastidas CC, Kosmopoulos D (2008) Superquadic segmentation in range image via fusion of region and boundary information. IEEE Trans Pattern Anal Mach Intell 20(5):781–795, 2008CrossRefGoogle Scholar
  66. 66.
    Weingarten J, Siegwart R (2005) EKF-based 3D SLAM for structured environment. In: IEEE/RSJ international conference on intelligent robots and systems, Edmonton, Alberta, pp 2089–2094Google Scholar
  67. 67.
    Han F, Tu Z, Zhu SC (2004) Range image segmentation by an effective jump-diffusion method. IEEE Trans Pattern Anal Mach Intell 26(9):1138–1153CrossRefGoogle Scholar
  68. 68.
    Borenstein E, Ullman S (2008) Combined top-down/bottom-up segmentation. IEEE Trans Pattern Anal Mach Intell 30(12):2109–2125CrossRefGoogle Scholar
  69. 69.
    Malisiewicz T, Efros AA (2008) Recognition by association via learning per-exemplar distances. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), AnchorageGoogle Scholar
  70. 70.
    Porway J, Wange K, Zhu SC (2008) A hierarchical and contextual model for aerial image understanding. In: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR), Anchorage, pp 1–8Google Scholar
  71. 71.
    Tu Z, Chen X, Yuille A, Zhu SC (2005) Image parsing: unifying segmentation, detection and recognition. Int J Comput Vis 63(2):113–140CrossRefGoogle Scholar
  72. 72.
    Golovinskiy A, Kim VG, Funkhouser T (2009) Shape-based recognition of 3D point clouds in urban environments. In: IEEE international conference on computer vision, Kyoto, pp 2154–2161Google Scholar
  73. 73.
    Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905CrossRefGoogle Scholar
  74. 74.
    Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59:167–181CrossRefGoogle Scholar
  75. 75.
    Jiang X, Bunke H (1994) Fast segmentation of range images into planar regions by scan line grouping. Mach Vis Appl 7:115–122CrossRefGoogle Scholar
  76. 76.
    Rosin PL, West GAW (1995) Nonparametric segmentation of curves into various representations. IEEE Trans Pattern Anal Mach Intell 17:1140–1153. http://users.cs.cf.ac.uk/Paul.Rosin
  77. 77.
    Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/∼cjlin/libsvm
  78. 78.
    PKU Omni Smart Sensing – POSS (2010) http://www.poss.pku.edu.cn

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Huijing Zhao
    • 1
  • Long Xiong
    • 1
  • Yiming Liu
    • 1
  • Xiaolong Zhu
    • 1
  • Yipu Zhao
    • 1
  • Hongbin Zha
    • 1
  1. 1.Key Lab of Machine Perception (MOE)Peking UniversityBeijingChina