Skip to main content

Amyloid-Beta, BDNF, and the Mechanism of Neurodegeneration in Alzheimer’s Disease

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

The accumulation of amyloid-β is widely considered the primary neurotoxic insult leading to Alzheimer’s disease. Although the precise mechanism of this toxicity is not well understood, amyloid-β-induced downregulation of brain-derived neurotrophic factor may be one of the most important contributors to amyloid-β toxicity. Brain-derived neurotrophic factor has diverse neurotrophic effects on the nervous system, including promoting synaptic plasticity and neurogenesis, and it is essential for cognition and memory. Early in the progression of Alzheimer’s disease, prior to significant plaque and tangle deposition, declining brain-derived neurotrophic factor expression induced by amyloid-β is associated with mounting impairments in cognition and memory. A variety of approaches have demonstrated that increasing brain-derived neurotrophic factor levels improves learning and memory, highlighting the possibility that therapeutically restoring brain-derived neurotrophic factor levels may prevent or reverse the memory impairments and cognitive decline seen in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal, N. T., Wilson, R. S., Beck, T. L., Bienias, J. L., & Bennett, D. A. (2005). Mild cognitive impairment in different functional domains and incident Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 76(11), 1479–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Wyss-Coray, T. (2000). Inflammation and Alzheimer’s disease. Neurobiology of Aging, 21, 383–421.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alderson, R. F., Alterman, A. L., Barde, Y.-A., & Lindsay, R. M. (1990). Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron, 5, 297–306.

    CAS  PubMed  Google Scholar 

  • Anderson, K. D., Alderson, R. F., Altar, C. A., DiStefano, P. S., Corcoran, T. L., Lindsay, R. M., & Wiegand, S. J. (1995). Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors. The Journal of comparative neurology, 357, 296–317.

    CAS  PubMed  Google Scholar 

  • Ando, S., Kobayashi, S., Waki, H., Kon, K., Fukui, F., Tadenuma, T., Iwamoto, M., Takeda, Y., Izumiyama, N., Watanabe, K., & Nakamura, H. (2002). Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine. Journal of neuroscience research, 70, 519–527.

    CAS  PubMed  Google Scholar 

  • Aronoff, J. M., Gonnerman, L. M., Almor, A., Arunchalam, S., Kempler, D., & Andersen, E. S. (2006). Information content versus relational knowledge: Semantic deficits in patients with Alzheimer’s disease. Neuropsychologia, 44(1), 21–35.

    PubMed  Google Scholar 

  • Atwal, J. K., Massie, B., Miller, F. D., & Kaplan, D. R. (2000). The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron, 27(2), 265–277.

    CAS  PubMed  Google Scholar 

  • Barco, A., Patterson, S. L., Alarcon, J. M., Gromova, P., Mata-Roig, M., Morozov, A., & Kandel, E. R. (2005). Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron, 48(1), 123–137.

    CAS  PubMed  Google Scholar 

  • Barco, A., Pittenger, C., & Kandel, E. R. (2003). CREB, memory enhancement and the treatment of memory disorders: Promises, pitfalls and prospects. Expert Opinion on Therapeutic Targets, 7(1), 101–114.

    CAS  PubMed  Google Scholar 

  • Baxter, M. G., & Chiba, A. A. (1999). Cognitive functions of the basal forebrain. Current Opinion in Neurobiology, 9(2), 178–183.

    CAS  PubMed  Google Scholar 

  • Berchtold, N. C., Kessiak, J. P., & Cotman, C. W. (2002). Hippocampal brain-derived neurotrophic factor gene regulation by exercise and the medial septum. Journal of neuroscience research, 68(5), 511–521.

    CAS  PubMed  Google Scholar 

  • Berninger, B., García, D. E., Inagaki, N., Hahnel, C., & Lindholm, D. (1993). BDNF and NT-3 induce intracellular Ca2+ elevation in hippocampal neurones. Neuroreport, 4(12), 1303–1306.

    CAS  PubMed  Google Scholar 

  • Blanquet, P. R., & Lamour, Y. (1997). Brain-derived neurotrophic factor increases Ca2+/calmodulin-dependent protein kinase 2 activity in hippocampus. The Journal of biological chemistry, 272(39), 24133–24136.

    CAS  PubMed  Google Scholar 

  • Blurton-Jones, M., Kitazawa, M., Martinez-Coria, H., Castello, N. A., Muller, F.-J., Loring, J. F., Yamasaki, T. R., Poon, W. W., Green, K. N., & LaFerla, F. M. (2009). Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proceedings of the National Academy of Sciences U S A., 106(32), 13594–13599.

    CAS  Google Scholar 

  • Boado, R. J., Zhang, Y., Zhang, Y., & Pardridge, W. M. (2007). Genetic engineering, expression, and activity of a fusion protein of a human neurotrophin and a molecular trojan horse for delivery across the human blood–brain barrier. Biotechnology and Bioengineering, 97(6), 1376–1386.

    CAS  PubMed  Google Scholar 

  • Boekhoorn, K., Joels, M., & Lucassen, P. J. (2006). Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiology of Disease, 24(1), 1–14.

    CAS  PubMed  Google Scholar 

  • Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henschen, A., Yates, J., Cotman, C., & Glabe, C. (1992). Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. The Journal of biological chemistry, 265(1), 546–554.

    Google Scholar 

  • Caccamo, A., Maldonado, M. A., Bokov, A. F., Majumder, S., & Oddo, S. (2010). CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. PNAS, 107(52), 22687–22692.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, Q.-S., Kagan, B., Hirakura, Y., & Xie, C.-W. (2000). Impairment of hippocampal long-term potentiation by Alzheimer amyloid β-peptides. Journal of Neuroscience Research, 60, 65–72.

    CAS  PubMed  Google Scholar 

  • Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A. Y., Seubert, P., Vigo-Pelfrey, C., Lieberburg, I., & Selkoe, D. J. (1992). Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature, 360(6405), 673–674.

    Google Scholar 

  • Coleman, P. D., & Flood, D. G. (1987). Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiology of Aging, 8, 521–545.

    CAS  PubMed  Google Scholar 

  • Coleman, P. D., & Yao, P. J. (2003). Synaptic slaughter in Alzheimer’s disease. Neurobiology of Aging, 24, 1023–1027.

    CAS  PubMed  Google Scholar 

  • Connor, B., Young, D., Yan, Q., Faull, R. L., Synek, B., & Dragunow, M. (1997). Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain research. Molecular brain research, 49, 71–81.

    CAS  PubMed  Google Scholar 

  • Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in neurosciences, 25(6), 295–301.

    CAS  PubMed  Google Scholar 

  • Cotman, C., & Head, E. (2008). The canine (dog) model of human aging and disease: Dietary, environmental and immunotherapy approaches. Journal of Alzheimer’s disease, 15(4), 685–707.

    CAS  PubMed  Google Scholar 

  • Coyle, J., Price, D., & DeLong, M. (1983). Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science, 219(4589), 1184–90.

    CAS  PubMed  Google Scholar 

  • Crews, L., Adame, A., Patrick, C., Delaney, A., Pham, E., Rockenstein, E., Hansen, L., & Masliah, E. (2010). Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. The Journal of neuroscience, 30(37), 12252–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cullen, W., Suh, Y., Anwyl, R., & Rowan, M. (1997). Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments. Neuroreport, 8(15), 3213–3217.

    CAS  PubMed  Google Scholar 

  • DaRocha-Souto, B., Coma, M., Pérez-Nievas, B. G., Scotton, T. C., Siao, M., Sánchez-Ferrer, P., Hashimoto, T., Fan, Z., Hudry, E., Barroeta, I., Serenó, L., Rodríguez, M., Sánchez, M. B., Hyman, B. T., & Gómez-Isla, T. (2012). Activation of glycogen synthase kinase-3 beta mediates β-amyloid induced neuritic damage in Alzheimer’s disease. Neurobiology of disease, 45(1), 425–437.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis, K. E., Easton, A., Eacott, M. J., Gigg, J. (2012) Episodic-like memory for what-where-which occasion is selectively impaired in the 3xTgAD mouse model of Alzheimer’s disease. Journal of Alzheimer’s disease. In press.

    Google Scholar 

  • DeFelice, F., Velasco, P., Lambert, M., Viola, K., Fernandez, S., Ferreira, S., & Klein, W. (2007). Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. Journal of Biological. Chemistry, 282(15), 11590–11601.

    CAS  Google Scholar 

  • DeMarch, Z., Giampà, C., Patassini, S., Bernardi, G., & Fusco, F. R. (2008). Beneficial effects of rolipram in the R6/2 mouse model of huntington’s disease. Neurobiology of Disease, 30(3), 375–387.

    CAS  PubMed  Google Scholar 

  • Demuro, A., Mina, E., Kayed, R., Milton, S., Parker, I., & Glabe, C. (2005). Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. The Journal of biological chemistry, 280(17), 17294–17300.

    CAS  PubMed  Google Scholar 

  • DeStrooper, B., & Annaert, W. (2000). Proteolytic processing and cell biological functions of the amyloid precursor protein. Journal of cell science, 113, 1857–1870.

    CAS  Google Scholar 

  • Devanand, D. P., Pradhaban, G., Liu, X., Khandji, A., De Santi, S., Segal, S., & de Leon, M. J. (2007). Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology, 68(11), 828–836.

    CAS  PubMed  Google Scholar 

  • Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B., & Weinberger, D. R. (2003). The BDNF Val66Met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.

    CAS  PubMed  Google Scholar 

  • España, J., Valero, J., Miñano-Molina, A. J., Masgrau, R., Martín, E., Guardia-Laguarta, C., Lleó, A., Giménez-Llort, L., Rodríguez-Alvarez, J., & Saura, C. A. (2010). beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. The Journal of neuroscience, 30(28), 9402–9410.

    PubMed  Google Scholar 

  • Fahnestock, M., Garzon, D., Holsinger, R. M. D., & Michalski, B. (2002). Neurotrophic factors and Alzheimer’s disease: Are we focusing on the wrong molecule? Journal of Neural Transmission. Supplementa, 62, 241–252.

    CAS  Google Scholar 

  • Fahnestock, M., Marchese, M., Head, E., Pop, V., Michalski, B., Milgram, W., & Cotman, C. (2012). BDNF increases with behavioral enrichment and an antioxidant diet in the aged dog. Neurobiology of Aging, 33, 546–554.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falkenberg, T., Mohammed, A. K., Henriksson, B., Persson, H., Winblad, B., & Lindefors, N. (1992). Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neuroscience Letters, 138(1), 153–156.

    CAS  PubMed  Google Scholar 

  • Fayard, B., Loeffler, S., Weis, J., Vögelin, E., & Krüttgen, A. (2005). The secreted brain-derived neurotrophic factor precursor pro-BDNF binds to TrkB and p75NTR but not to TrkA or TrkC. Journal of neuroscience research, 80(1), 18–28.

    CAS  PubMed  Google Scholar 

  • Ferreira, S. T., Vieira, M. N., & De Felice, F. G. (2007). Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life, 59, 332–345.

    CAS  PubMed  Google Scholar 

  • Ferreiro, E., Resende, R., Costa, R., Oliveira, C., & Pereira, C. (2006). An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity. Neurobiology of Disease, 23, 669–678.

    CAS  PubMed  Google Scholar 

  • Ferrer, I., Marín, C., Rey, M. J., Ribalta, T., Goutan, E., Blanco, R., Tolosa, E., & Martí, E. (1999). BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. Journal of neuropathology and experimental neurology, 58, 729–739.

    CAS  PubMed  Google Scholar 

  • Figurov, A., Pozzo-Miller, L. D., Olafsoon, P., Wang, T., & Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 381(6584), 706–709.

    CAS  PubMed  Google Scholar 

  • Finkbeiner, S., Tavazoie, S. F., Maloratsky, A., Jacobs, K. M., Harris, K. M., & Greenberg, M. E. (1997). CREB: A major mediator of neuronal neurotrophin responses. Neuron, 19(5), 1031–1047.

    CAS  PubMed  Google Scholar 

  • Francis, B. M., Kim, J., Barakat, M. E., Fraenkl, S., Yücel, Y. H., Peng, S., Michalski, B., Fahnestock, M., McLaurin, J., & Mount, H. T. (2012). Object recognition memory and BDNF expression are reduced in young TgCRND8 mice. Neurobiology of Aging, 33(3), 555–563.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujioka, T., Fujioka, A., & Duman, R. S. (2004). Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. The Journal of neuroscience, 24, 319–328.

    CAS  PubMed  Google Scholar 

  • Garzon, D. J., & Fahnestock, M. (2007). Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. The Journal of neuroscience, 27, 2628–2635.

    CAS  PubMed  Google Scholar 

  • Garzon, D. J., Yu, G., & Fahnestock, M. (2002). A new BDNF transcript and decrease in BDNF transcripts 1, 2 and 3 in Alzheimer’s disease parietal cortex. Journal of Neurochemistry, 82, 1058–1064.

    CAS  PubMed  Google Scholar 

  • Ghosh, A., Carnahan, J., & Greenberg, M. E. (1994). Requirement for BDNF in activity- dependent survival of cortical neurons. Science, 263, 1618–1623.

    CAS  PubMed  Google Scholar 

  • Giovannini, M., Scali, C., Prosperi, C., Bellucci, A., Vannucchi, M., Rosi, S., & Casamenti, F. (2002). β-Amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: Involvement of the p38MAPK pathway. Neurobiology of Disease, 11, 257–274.

    CAS  PubMed  Google Scholar 

  • Glabe, C. (2001). Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. Journal of Molecular Neuroscience, 17, 137–145.

    CAS  PubMed  Google Scholar 

  • Glabe, C. (2004). Conformation-dependent antibodies target diseases of protein misfolding. Trends in biochemical sciences, 29(10), 542–547.

    CAS  PubMed  Google Scholar 

  • Gomez-Isla, T., Price, J. L., McKeel, D. W., Jr., Morris, J. C., Growdon, J. H., & Hyman, B. T. (1996). Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. The journal of neuroscience, 16, 4491–4500.

    CAS  PubMed  Google Scholar 

  • Gong, Y., Chang, L., Viola, K. L., Lacor, P. N., Lambert, M., Finch, C., Krafft, G., & Klein, W. L. (2003). Alzheimer’s disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proceedings National Academy of Sciences USA, 100, 10417–10422.

    CAS  Google Scholar 

  • Gonzalez, G. A., & Montminy, M. R. (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell, 59, 675–680.

    CAS  PubMed  Google Scholar 

  • Gorski, J. A., Balogh, S. A., Wehner, J. M., & Jones, K. R. (2003). Learning deficits in forebrain-restricted brain-derived neurotrophic factor mutant mice. Neuroscience, 121(2), 341–354.

    CAS  PubMed  Google Scholar 

  • Gotz, J., Chen, F., van Dorpe, J., & Nitsch, R. M. (2001). Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science, 293, 1491–1495.

    CAS  PubMed  Google Scholar 

  • Green, K. N., Smith, I. F., & Laferla, F. M. (2007). Role of calcium in the pathogenesis of Alzheimer’s disease and transgenic models. Sub-cellular biochemistry, 45, 507–21.

    CAS  PubMed  Google Scholar 

  • Guillozet, A. L., Weintraub, S., Mash, D. C., & Mesulam, M. M. (2003). Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Archives of neurology, 60, 729–736.

    PubMed  Google Scholar 

  • Guzowski, J. F., Lyford, G. L., Stevenson, G. D., Houston, F. P., McGaugh, J. L., Worley, P. F., & Barnes, C. A. (2000). Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. The Journal of neuroscience, 20(11), 3993–4001.

    CAS  PubMed  Google Scholar 

  • Haass, C., Koo, E., Mellon, A., Hung, A., & Selkoe, D. (1992). Targeting of cell-surface beta-amyloid precursor protein to lysosomes: Alternative processing into amyloid-bearing fragments. Nature, 357(6378), 500–503.

    CAS  PubMed  Google Scholar 

  • Haass, C., Hung, A., Selkoe, D., & Teplow, D. (1994). Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. The Journal of biological chemistry, 269(26), 17741–17748.

    CAS  PubMed  Google Scholar 

  • Hanna, A., Horne, P., Yager, D., Eckman, C., Eckman, E., & Janus, C. (2009). Amyloid beta and impairment in multiple memory systems in older transgenic APP TgCRND8 mice. Genes, brain, and behavior, 8(7), 676–684.

    CAS  PubMed  Google Scholar 

  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.

    CAS  PubMed  Google Scholar 

  • Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., & Weinberger, D. R. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of neuroscience, 23(17), 6690–6694.

    CAS  PubMed  Google Scholar 

  • Heldt, S. A., Stanek, L., Chhatwal, J. P., & Ressler, K. J. (2007). Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Molecular psychiatry, 12(7), 656–670.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heneka, M., & O’Banion, M. (2007). Inflammatory processes in Alzheimer’s disease. Journal of Neuroimmunology, 184, 69–91.

    CAS  PubMed  Google Scholar 

  • Hock, C., Heese, K., Hulette, C., Rosenberg, C., & Otten, U. (2000). Region-specific neurotrophin imbalances in Alzheimer disease: Decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Archives of neurology, 57, 846–851.

    CAS  PubMed  Google Scholar 

  • Holcomb, L., Gordon, M. N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., Wright, K., Saad, I., Mueller, R., Morgan, D., Sanders, S., Zehr, C., O'Campo, K., Hardy, J., Prada, C. M., Eckman, C., Younkin, S., Hsiao, K., & Duff, K. (1998). Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature medicine, 4(1), 97–100.

    CAS  PubMed  Google Scholar 

  • Holsinger, R. M. D., Schnarr, J., Henry, P., Castelo, V. T., & Fahnestock, M. (2000). Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: Decreased levels in Alzheimer’s disease. Molecular Brain Research, 76, 347–354.

    CAS  PubMed  Google Scholar 

  • Hutton, M., & Hardy, J. (1997). The presenilins and Alzheimer’s disease. Human molecular genetics, 6(10), 1639–1646.

    CAS  PubMed  Google Scholar 

  • Hyman, B. T. (1997). The neuropathological diagnosis of Alzheimer’s disease: Clinical-pathological studies. Neurobiology of Aging, 18(4 Suppl), S27–32.

    CAS  PubMed  Google Scholar 

  • Hyman, B. T., Van Horsen, G. W., Damasio, A. R., & Barnes, C. L. (1984). Alzheimer’s disease: Cell-specific pathology isolates the hippocampal formation. Science, 225, 1168–1170.

    CAS  PubMed  Google Scholar 

  • Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., Dickson, D. W., Duyckaerts, C., Frosch, M. P., Masliah, E., Mirra, S. S., Nelson, P. T., Schneider, J. A., Thal, D. R., Thies, B., Trojanowski, J. Q., Vinters, H. V., & Montine, T. J. (2012). National Institute on Aging-Alzheimer’s Association guidelines for the neuropathological assessment of Alzheimer’s disease. Alzheimers Dement, 8(1), 1–13.

    PubMed Central  PubMed  Google Scholar 

  • Iqbal, K., & Grundke-Iqbal, I. (2008). Alzheimer neurofibrillary degeneration: Significance, etiopathogenesis, therapeutics and prevention. Journal of Cellular and Molecular Medicine, 12(1), 38–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobsen, J. S., Wu, C.-C., Redwine, J. M., Comery, T. A., Arias, R., Bowlby, M., Martone, R., Morrison, J. H., Pangalos, M. N., Reinhart, P. H., & Bloom, F. E. (2006). Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proceedings of National Academy of Sciences USA, 103(13), 5161–6.

    CAS  Google Scholar 

  • Jagasia, R., Steib, K., Englberger, E., Herold, S., Faus-Kessler, T., Saxe, M., Gage, F. H., Song, H., & Lie, D. C. (2009). GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. The Journal of Neuroscience, 29(25), 7966–7977.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang, S. W., Liu, X., Yepes, M., Shepherd, K. R., Miller, G. W., Liu, Y., Wilson, W. D., Xiao, G., Blanchi, B., Sun, Y. E., & Ye, K. (2010). A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proceedings of the National Academy of Sciences of the USA, 107(6), 2687–2692.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jarrett, J., Berger, E., & Lansbury, P., Jr. (1993). The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer’s disease. Biochemistry, 32(18), 4693–4697.

    CAS  PubMed  Google Scholar 

  • Jin, K., Peel, A. L., Mao, X. O., Xie, L., Cottrell, B. A., Henshall, D. C., & Greenberg, D. A. (2004). Increased hippocampal neurogenesis in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the USA, 101(1), 343–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knusel, B., Winslow, J. W., Rosenthal, A., Burton, L. E., Seid, D. P., Nikolics, K., & Hefti, F. (1991). Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin-3. Proceedings of the National Academy of Sciences of the USA, 88, 961–965.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H., & Bonhoeffer, T. (1995). Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the USA, 92, 8856–8860.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koshimizu, H., Kiyosue, K., Hara, T., Hazama, S., Suzuki, S., Uegaki, K., Nagappan, G., Zaitsev, E., Hirokawa, T., Tatsu, Y., Ogura, A., Lu, B., & Kojima, M. (2009). Multiple functions of precursor BDNF to CNS neurons: Negative regulation of neurite outgrowth, spine formation and cell survival. Molecular Brain, 2, 27. doi:10.1186/1756-6606-2-27.

    PubMed Central  PubMed  Google Scholar 

  • Kumar, V., Zhang, M.-X., Swank, M. W., Kunz, J., & Gang-Yi, W. (2005). Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. Journal of Neuroscience, 25(49), 11288–11299.

    CAS  PubMed  Google Scholar 

  • Kuruvilla, R., Ye, H., & Ginty, D. D. (2000). Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron, 27(3), 499–512.

    CAS  PubMed  Google Scholar 

  • Lacor, P. N., Buniel, M. C., Furlow, P. W., Clemente, A. S., Velasco, P. T., Wood, M., Viola, K. L., & Klein, W. L. (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27(4), 796–807.

    CAS  PubMed  Google Scholar 

  • Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A., & Klein, W. L. (1998). Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences USA, 95, 6448–6453.

    CAS  Google Scholar 

  • Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294(5548), 1945–1948.

    CAS  PubMed  Google Scholar 

  • Lewis, J., Dickson, D. W., Wen-Lang, L., Chisholm, L., Corral, A., Jones, G., Shu-Hui, Y., Sahara, N., Skipper, L., Yager, D., Eckman, C., Hardy, J., Hutton, M., & McGowan, E. (2001). Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science, 293, 1487–1491.

    CAS  PubMed  Google Scholar 

  • Li, L., Orozco, I. J., Planel, E., Yi, W., Bretteville, A., Krishnamurthy, P., Wang, L., Herman, M., Figueroa, H., Haung Yu, W., Arancio, O., & Duff, K. (2008). A transgenic rat that develops Alzheimer’s disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiology of Disease, 31(1), 46–57.

    CAS  Google Scholar 

  • Lindholm, D., Carroll, P., Tzimagiorgis, G., & Thoenen, H. (1996). Autocrine-paracrine regulation of hippocampal neuron survival by IGF-1 and the neurotrophins BDNF, NT-3 and NT-4. The European Journal of Neuroscience, 8(7), 1452–1460.

    CAS  PubMed  Google Scholar 

  • Linnarsson, S., Björklund, A., & Ernfors, P. (1997). Learning deficit in BDNF mutant mice. The European Journal of Neuroscience, 9(12), 2581–2587.

    CAS  PubMed  Google Scholar 

  • Lowenstein, D. H., & Arsenault, L. (1996). The effects of growth factors on the survival and differentiation of cultured dentate gyrus neurons. Journal of Neuroscience, 16(5), 1759–1769.

    CAS  PubMed  Google Scholar 

  • Lu, B. (2003). BDNF and activity-dependent synaptic modulation. Learning and memory, 10, 86–98.

    PubMed  Google Scholar 

  • Lu, B., Pang, P. T., & Woo, N. H. (2005). The yin and yang of neurotrophin action. Nature Reviews Neuroscience, 6(8), 603–614.

    CAS  PubMed  Google Scholar 

  • Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J. H., Rydel, R. E., & Rogers, J. (1999). Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. The American Journal of Pathology, 155(3), 853–862.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lukiw, W., & Bazan, N. (2000). Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochemical Research, 25(9/10), 1173–1184.

    CAS  PubMed  Google Scholar 

  • Lynch, M. A. (2004). Long-term potentiation and memory. Physiological Reviews, 84, 87–136.

    CAS  PubMed  Google Scholar 

  • Maher, P., Akaishi, T., & Abe, K. (2006). Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proceedings of the National Academy of Sciences USA, 103, 16568–16573.

    CAS  Google Scholar 

  • Markus, A., Zhong, J., & Snider, W. D. (2002). Raf and akt mediate distinct aspects of sensory axon growth. Neuron, 35, 65–76.

    CAS  PubMed  Google Scholar 

  • Masliah, E., Sisk, A., Mallory, M., & Games, D. (2001). Neurofibrillary pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Journal of Neuropathology and Experimental Neurology, 60, 357–368.

    CAS  PubMed  Google Scholar 

  • Massa, S. M., Yang, T., Xie, Y., Shi, J., Bilgen, M., Joyce, J. N., Nehama, D., Rajadas, J., & Longo, F. M. (2010). Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. The Journal of Clinical Investigation, 120(5), 1774–1785.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Massey, P. V., Johnson, B. E., Moult, P. R., Auberson, Y. P., Brown, M. W., Molnar, E., Collingridge, G. L., & Bashir, Z. I. (2004). Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. The Journal of Neuroscience, 24(36), 7821–7828.

    CAS  PubMed  Google Scholar 

  • Mattson, M. (2004). Pathways towards and away from Alzheimer’s disease. Nature, 430, 631–640.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mattson, M., Barger, S., Cheng, B., Lieberburg, I., Smith-Swintosky, V., & Rydel, R. (1993). β-amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. TINS, 16(10), 409–414.

    CAS  PubMed  Google Scholar 

  • Mattson, M. P., Duan, W., Wan, R., & Guo, Z. (2004). Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral manipulations. NeuroRx, 1(1), 111–116.

    PubMed Central  PubMed  Google Scholar 

  • McKhann, G., Drachman, D. A., Folstein, M., Katzman, R., Price, D. L., Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease – report of the NINCDS–ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34, 939–944.

    CAS  PubMed  Google Scholar 

  • Merz, K., Herold, S., & Lie, C. (2012). CREB in adult neurogenesis – master and partner in development of adult-born neurons? The European Journal of Neuroscience, 33, 1078–1086.

    Google Scholar 

  • Michalski, B., & Fahnestock, M. (2003). Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer’s disease. Molecular Brain Research, 111, 148–154.

    CAS  PubMed  Google Scholar 

  • Minichiello, L., Korte, M., Wolfer, D., Kühn, R., Unsicker, K., Cestari, V., Rossi-Arnaud, C., Lipp, H. P., Bonhoeffer, T., & Klein, R. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 24(2), 401–414.

    CAS  PubMed  Google Scholar 

  • Mitchell, A. J., & Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119(4), 252–265.

    CAS  PubMed  Google Scholar 

  • Mowla, S., Farhadi, H., Pareek, S., Atwal, J., Morris, S., Seidah, N., & Murphy, R. (2001). Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. The Journal of Biological Chemistry, 276(16), 12660–12666.

    CAS  PubMed  Google Scholar 

  • Mu, Y., & Gage, F. H. (2011). Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Molecular Neurodegeneration, 6, 85.

    PubMed Central  PubMed  Google Scholar 

  • Murray, K. D., Gall, C. M., Jones, E. G., & Isackson P. J. (1994). Differential regulation of brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase messenger RNA expression in Alzheimer’s disease. Neuroscience, 60(1), 37–48.

    CAS  PubMed  Google Scholar 

  • Murray, C. A., & Lynch, M. A. (1998). Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. The Journal of Neuroscience, 18, 2974–2981.

    CAS  PubMed  Google Scholar 

  • Nagahara, A. H., Merrill, D. A., Coppola, G., Tsukada, S., Schroeder, B. E., Shaked, G. M., Wang, L., Blesch, A., Kim, A., Conner, J. M., Rockenstein, E., Chao, M. V., Koo, E. H., Geschwind, D., Masliah, E., Chiba, A. A., & Tuszynski, M. H. (2009). Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nature Medicine, 15(3), 331–337.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa, S., Kim, J. E., Chen, J., Fujioka, T., Malberg, J., Tsuji, S., & Duman, R. S. (2002a). Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. Journal of the Neuroscience, 22(22), 9868–9876.

    CAS  Google Scholar 

  • Nakagawa, S., Kim, J. E., Lee, R., Malberg, J. E., Chen, J., Steffen, C., Zhang, Y. J., Nestler, E. J., & Duman, R. S. (2002b). Regulation of neurogenesis in adult mouse hippocampus by cAMP and cAMP response element-binding protein. Journal of Neuroscience, 22(9), 3673–3682.

    CAS  PubMed  Google Scholar 

  • Narisawa-Saito, M., Wakabayashi, K., Tsuji, S., Takahashi, H., & Nawa, H. (1996). Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer’s disease. Neuroreport, 7(18), 2925–2928.

    CAS  PubMed  Google Scholar 

  • Nikoletopoulou, V., Lickert, H., Frade, J. M., Rencurel, C., Giallonardo, P., Zhang, L., Bibel, M., & Barde, Y. A. (2010). Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature, 467(7311), 59–63.

    CAS  PubMed  Google Scholar 

  • Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., Teng, K. K., Yung, W. H., Hempstead, B. L., & Lu, B. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 306, 487–491.

    CAS  PubMed  Google Scholar 

  • Patterson, S. L., Abel, T., Deuel, T. A., Martin, K. C., Rose, J. C., & Kandel, E. R. (1996). Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron, 16, 1137–1145.

    CAS  PubMed  Google Scholar 

  • Peng, S., Wuu, J., Mufson, E. J., & Fahnestock, M. (2005). Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. Journal of Neurochemistry, 93, 1412–1421.

    CAS  PubMed  Google Scholar 

  • Peng, S., Garzon, D. J., Marchese, M., Klein, W., Ginsberg, S. D., Francis, B. M., Mount, H. T., Mufson, E. J., Salehi, A., & Fahnestock, M. (2009). Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. The Journal of Neuroscience, 29(29), 9321–9329.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pennanen, L., & Gotz, J. (2005). Different tau epitopes define Abeta(42)-mediated tau insolubility. Biochemical and Biophysical Research Communications, 337(4), 1097–1101.

    CAS  PubMed  Google Scholar 

  • Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A., & Winslow, J. W. (1991). BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron, 7, 695–702.

    CAS  PubMed  Google Scholar 

  • Pietropaolo, S., Paterna, J. C., Büeler, H., Feldon, H., & Yee, B. K. (2007). Bidirectional changes in water-maze learning following recombinant adenovirus-associated viral vector (rAAV)-mediated brain-derived neurotrophic factor expression in the rat hippocampus. Behavioural Pharmacology, 18(5–6), 533–547.

    CAS  PubMed  Google Scholar 

  • Pittenger, C., & Kandel, E. (1998). A genetic switch for long-term memory. C. R. Acad. Sci. III, 321(2–3), 91–96.

    CAS  PubMed  Google Scholar 

  • Pruunsild, P., Kazantseva, A., Aid, T., Palm, K., & Timmusk, T. (2007). Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics, 90(3), 397–406.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rauskolb, S., Zagrebelsky, M., Dreznjak, A., Deogracias, R., Matsumoto, T., Wiese, S., Erne, B., Sendtner, M., Schaeren-Wiemers, N., Korte, M., & Barde, Y. A. (2010). Global deprivation of brain-derived neurotrophic factor in CNS reveals an area-specific requirement for dendritic growth. Journal of Neuroscience, 30(5), 1739–1749.

    CAS  PubMed  Google Scholar 

  • Resende, R., Pereira, C., Agostinho, P., Vieira, A., Malva, J., & Oliveira, C. (2007). Susceptibility of hippocampal neurons to Aβ peptide toxicity is associate with perturbation of Ca2+ homeostasis. Brain Research, 1143, 11–21.

    CAS  PubMed  Google Scholar 

  • Scharfman, H. E. (1997). Hyperexcitability in combined entorhinal/hippocampal slices of adult rat after exposure to brain-derived neurotrophic factor. Journal of Neurophysiology, 78, 1082–1095.

    CAS  PubMed  Google Scholar 

  • Scharfman, H., Goodman, J., Macleod, A., Phani, S., Antonelli, C., & Croll, S. (2004). Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Experimental Neurology, 192(2), 348–356.

    Google Scholar 

  • Scheff, S. W., & Price, D. A. (2003). Synaptic pathology in Alzheimer’s disease: A review of ultrastructural studies. Neurobiology of Aging, 24, 1029–1046.

    CAS  PubMed  Google Scholar 

  • Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T. D., Hardy, J., Hutton, M., Kukull, W., Larson, E., Levy-Lahad, E., Viitanen, M., Peskind, E., Poorkaj, P., Schellenberg, G., Tanzi, R., Wasco, W., Lannfelt, L., Selkoe, D., & Younkin, S. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Medicine, 2(8), 864–870.

    CAS  PubMed  Google Scholar 

  • Selkoe, D. J. (1994). Amyloid beta-protein precursor: New clues to the genesis of Alzheimer’s disease. Current Opinion in Neurobiology, 4(5), 708–716.

    CAS  PubMed  Google Scholar 

  • Shieh, P. B., Hu, S. C., Bobb, K., Timmusk, T., & Ghosh, A. (1998). Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron, 20(4), 727–740.

    CAS  PubMed  Google Scholar 

  • Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L. M., Cai, X. D., McKay, D. M., Tintner, R., Frangione, B., et al. (1992). Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science, 258(5079), 126–129.

    CAS  PubMed  Google Scholar 

  • Singh, K. K., Park, K. J., Hong, E. J., Kramer, B. M., Greenberg, M. E., Kaplan, D. R., & Miller, F. D. (2008). Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nature Neuroscience, 11(6), 64–658.

    Google Scholar 

  • Soscia, S., Kirby, J., Washicosky, K., Tucker, S., Ingelsson, M., Hyman, B., Burton, M. A., Goldstein, L. E., Duong, S., Tanzi, R. E., Moir R. D. (2010). The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS ONE, 5(3) e9505. doi: 10.1371/journal.pone.0009505.

    Google Scholar 

  • Sponne, I., Fifre, A., Drouet, B., Klein, C., Koziel, V., Pinçon-Raymond, M., Olivier, J. L., Chambaz, J., & Pillot, T. (2003). Apoptotic neuronal cell death induced by the non-fibrillar amyloid-β peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. The Journal of Biological Chemistry, 278(5), 3437–3445.

    CAS  PubMed  Google Scholar 

  • Sun, Y., Lim, Y., Li, F., Liu, S., Lu, J.-J., Haberberger, R., Zhong, J.-H., & Zhou, X. F. (2012). ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLOS ONE, 7(4), e35883. doi:10.1371/journal.pone.0035883.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabaton, M., Zhu, X., Perry, G., Smith, M., & Giliberto, L. (2010). Signaling effect of amyloid-β42 on the processing of AβPP. Experimental Neurology, 221(1), 18–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tancredi, V., D’Arcangelo, G., Grassi, F., Tarroni, P., Palmieri, G., Santoni, A., & Eusebi, F. (1992). Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neuroscience Letters, 146(2), 176–178.

    CAS  PubMed  Google Scholar 

  • Tancredi, V., D’Antuono, M., Cafè, C., Giovedì, S., Buè, M. C., D’Arcangelo, G., Onofri, F., & Benfenati, F. (2000). The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK. Journal of Neurochemistry, 75(2), 634–643.

    CAS  PubMed  Google Scholar 

  • Teng, H. K., Teng, K. K., Lee, R., Wright, S., Tevar, S., Almeida, R. D., Kermani, P., Torkin, R., Chen, Z. Y., Lee, F. S., Kraemer, R. T., Nykjaer, A., & Hempstead, B. L. (2005). ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. The Journal of Neuroscience, 25(22), 5455–5463.

    CAS  PubMed  Google Scholar 

  • Terry, R. D., & Katzman, R. (2001). Life span and synapses: Will there be a primary senile dementia? Neurobiology of Aging, 22, 347–348.

    CAS  PubMed  Google Scholar 

  • Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., & Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30(4), 572–580.

    CAS  PubMed  Google Scholar 

  • Timmusk, T., Palm, K., Metsis, M., Reintam, T., Paalme, V., Saarma, M., & Persson, H. (1993). Multiple promoters direct tissue-specific expression of the rate BDNF gene. Neuron, 10, 475–489.

    CAS  PubMed  Google Scholar 

  • Timmusk, T., Lendahl, U., Funakoshi, H., Arenas, E., Persson, H., & Metsis, M. (1995). Identification of brain-derived neurotrophic factor promoter regions mediating tissue-specific, axotomy-, and neuronal activity-induced expression in transgenic mice. The Journal of Cell Biology, 128, 185–199.

    CAS  PubMed  Google Scholar 

  • Tong, L., Thornton, P. L., Balazs, R., & Cotman, C. W. (2001). Beta-amyloid-(1–42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival is not compromised. Journal of Biological Chemistry, 276, 17301–17306.

    CAS  PubMed  Google Scholar 

  • Tong, L., Balazs, R., Thornton, P. L., & Cotman, C. W. (2004). Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. The Journal of Neuroscience, 24, 6799–6809.

    CAS  PubMed  Google Scholar 

  • Van Dam, D., D’Hooge, R., Staufenbiel, M., Van Ginneken, C., Van Meir, F., & De Deyn, P. P. (2003). Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. European Journal of Neuroscience, 17(2), 388–396.

    PubMed  Google Scholar 

  • Van Hoesen, G. W., Hyman, B. T., & Damasio, A. R. (1991). Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus, 1(1), 1–8.

    PubMed  Google Scholar 

  • Vitolo, O. V., Sant’Angelo, A., Costanzo, V., Battaglia, F., Arancio, O., & Shelanski, M. (2002). Amyloid beta peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proceedings of the National Academy of Sciences of the USA, 99(20), 13217–13221.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh, D. M., & Selkoe, D. J. (2007). A beta oligomers – a decade of discovery. Journal of Neurochemistry, 101, 1172–1184.

    CAS  PubMed  Google Scholar 

  • Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., & Selkoe, D. J. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.

    CAS  PubMed  Google Scholar 

  • Westerman, M. A., Cooper-Blacketer, D., Mariash, A., Kotilinek, L., Kawarabayashi, T., Younkin, L. H., Carlson, G. A., Younkin, S. G., & Ashe, K. H. (2002). The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci, 22(5), 1858–1867.

    CAS  PubMed  Google Scholar 

  • Woo, N. H., Teng, H. K., Siao, C. J., Chiaruttini, C., Pang, P. T., Milner, T. A., Hempstead, B. L., & Lu, B. (2005). Activation of p75 NTR by proBDNF facilitates hippocampal long-term depression. Nature Neuroscience, 8(8), 1069–1077.

    CAS  PubMed  Google Scholar 

  • Xu, B., Michalski, B., Racine, R. J., & Fahnestock, M. (2004). The effects of brain-derived neurotrophic factor (BDNF) administration on kindling induction, Trk expression and seizure-related morphological changes. Neuroscience, 126(3), 521–531.

    CAS  PubMed  Google Scholar 

  • Xu, Y., Shen, J., Lou, X., Zhu, W., Chen, K., Ma, J., & Jiang, H. (2005). Conformational transition of amyloid beta-peptide. Proceedings of the National Academy of Sciences of the USA, 102(15), 5403–5407.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto-Sasaki, M., Ozawa, H., Saito, T., Rosler, M., & Riederer, P. (1999). Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer’s type. Brain Research, 842(2), 300–303.

    Google Scholar 

  • Yamashita, T., & Tohyama, M. (2003). The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neuroscience, 6(5), 461–467.

    CAS  PubMed  Google Scholar 

  • Yamashita, T., Tucker, K. L., & Barde, Y.-A. (1999). Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron, 24, 585–593.

    CAS  PubMed  Google Scholar 

  • Yamin, G. (2009). NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus. Journal of Neuroscience Research, 87(8), 1729–36.

    CAS  PubMed  Google Scholar 

  • Ying, S. W., Futter, M., Rosenblum, K., Webber, M. J., Hunt, S. P., Bliss, T. V., & Bramham, C. R. (2002). Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: Requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. Journal of Neuroscience, 22(5), 1532–1540.

    CAS  PubMed  Google Scholar 

  • Ypsilanti, A. R., Girão da Cruz, M. T., Burgess, A., & Aubert, I. (2008). The length of hippocampal cholinergic fibers is reduced in the aging brain. Neurobiology Aging, 29(11), 1666–1679.

    CAS  Google Scholar 

  • Zagrebelsky, M., Holz, A., Dechant, G., Barde, Y.-A., Bonhoeffer, T., & Korte, M. (2005). The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. Journal of Neuroscience, 25(43), 9989–9999.

    CAS  PubMed  Google Scholar 

  • Zajac, M. S., Pang, T. Y., Wong, N., Weinrich, B., Leang, L. S., Craig, J. M., Saffery, R., & Hannan, A. J. (2010). Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington’s disease mice. Hippocampus, 20(5), 621–636.

    CAS  PubMed  Google Scholar 

  • Ze-F, W., Li, H.-L., Li, X.-C., Zhang, Q., Tian, Q., Wang, Q., Xu, H., & Wang, J.-Z. (2006). Effects of endogenous beta-amyloid overproduction on tau phosphorylation in cell culture. Journal of Neurochemistry, 98, 1167–1175.

    Google Scholar 

  • Zeng, Y., Zhao, D., & Xie, C. W. (2010). Neurotrophins enhance CaMKII activity and rescue amyloid-β-induced deficits in hippocampal synaptic plasticity. Journal of Alzheimer’s Disease, 21, 823–831.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, Y., & Pardridge, W. M. (2001a). Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Research, 889(1–2), 49–56.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., & Pardridge, W. M. (2001b). Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood–brain barrier drug targeting system. Stroke, 32(6), 1378–1384.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., & Pardridge, W. M. (2006). Blood–brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Research, 1111(1), 227–229.

    CAS  PubMed  Google Scholar 

  • Zhao, C., Deng, W., & Gage, F. H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132, 645–660.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Fahnestock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Rosa, E., Fahnestock, M. (2014). Amyloid-Beta, BDNF, and the Mechanism of Neurodegeneration in Alzheimer’s Disease. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_43

Download citation

Publish with us

Policies and ethics