Advertisement

NGF and Immune Regulation

  • Luisa Bracci-Laudiero
  • Luigi Manni
Reference work entry

Abstract

For some time after its discovery, the action of nerve growth factor (NGF) was considered restricted to the nervous system. Instead, a variety of experimental data indicate that NGF can influence the activity of both the nervous and immune systems. This should not be surprising since these two systems are responsible both for maintaining homeostasis and for adapting the body to the environment. To orchestrate strictly integrated responses, they need to have close anatomical connections and to share common chemical signals and specific receptors. The well-known effects of NGF on peripheral neuron survival and maintenance and dynamic control by NGF of innervation and neuropeptide synthesis, together with its direct effects on immune cell functions, indicate that NGF has a key role in the complex network of bidirectional signals between the nervous and immune systems. NGF receptors are expressed in immune organs and cell populations, allowing NGF to modulate cell differentiation and regulate immune response. NGF concentrations in tissues change during inflammation, and inflammatory mediators induce NGF synthesis in a variety of cell types. As a growing number of studies have shown, an enhanced production of NGF characterizes inflamed tissues of patients with inflammatory and autoimmune diseases. Unfortunately, although the dynamic regulation of NGF synthesis seems to be a common feature of chronic inflammatory diseases, the reasons why NGF concentrations are enhanced and how this can affect inflammatory responses and the course of the diseases are far from being understood.

Keywords

Mast Cell Nerve Growth Factor Experimental Autoimmune Encephalomyelitis Nerve Growth Factor Receptor Inducible cAMP Early Repressor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

BBB

Blood–brain barrier

CGRP

Calcitonin gene-related peptide

CHS

Contact hypersensitivity

CIPA

Congenital insensitivity to pain with anhidrosis

CNS

Central nervous system

COX2

Cyclooxygenase 2

CSF

Cerebrospinal fluid

DRG

Dorsal root ganglion

EAE

Experimental autoimmune encephalomyelitis

Gal

Galanin

GM-CSF

Granulocyte-macrophage colony-stimulating factor

IFN

Interferon

IL

Interleukin

LPS

Lipopolysaccharide

MAPK

Mitogen-activated protein kinase

MPB

Myelin basic protein

NGF

Nerve growth factor

NO

Nitric oxide

NPY

Neuropeptide Y

NT

Neurotrophin

NTR

Neurotrophin receptor

PI3K

Phosphatidylinositol 3-kinase

PNS

Peripheral nervous system

SP

Substance P

TH

Tyrosine hydroxylase

TNF

Tumor necrosis factor

TrkA

Tropomyosin kinase receptor A

UV

Ultraviolet

VIP

Vasoactive intestinal peptide

References

  1. Aalto, K., Korhonen, L., Lahdenne, P., Pelkonen, P., & Lindholm, D. (2002). Nerve growth factor in serum of children with systemic lupus erythematosus is correlated with disease activity. Cytokine, 20(3), 136–139.PubMedGoogle Scholar
  2. Abram, M., Wegmann, M., Fokuhl, V., Sonar, S., Luger, E. O., Kerzel, S., Radbruch, A., Renz, H., & Zemlin, M. (2009). Nerve growth factor and neurotrophin-3 mediate survival of pulmonary plasma cells during the allergic airway inflammation. Journal of Immunology, 182(8), 4705–4712.Google Scholar
  3. Alleva, E., Aloe, L., & Bigi, S. (1993). An updated role for nerve growth factor in neurobehavioural regulation of adult vertebrates. Reviews in the Neurosciences, 4(1), 41–62.PubMedGoogle Scholar
  4. Aloe, L. (2001). Nerve growth factor and neuroimmune responses: Basic and clinical observations. Archives of Physiology and Biochemistry, 109(4), 354–356.PubMedGoogle Scholar
  5. Aloe, L., & Levi-Montalcini, R. (1977). Mast cells increase in tissues of neonatal rats injected with the nerve growth factor. Brain Research, 133(2), 358–366.PubMedGoogle Scholar
  6. Aloe, L., Tuveri, M. A., Carcassi, U., & Levi-Montalcini, R. (1992). Nerve growth factor in the synovial fluid of patients with chronic arthritis. Arthritis and Rheumatism, 35(3), 351–355.PubMedGoogle Scholar
  7. Aloe, L., Bracci-Laudiero, L., Bonini, S., & Manni, L. (1997a). The expanding role of nerve growth factor: From neurotrophic activity to immunologic diseases. Allergy, 52(9), 883–894.PubMedGoogle Scholar
  8. Aloe, L., Micera, A., Bracci-Laudiero, L., Vigneti, E., & Turrini, P. (1997b). Presence of nerve growth factor in the thymus of prenatal, postnatal and pregnant rats. Thymus, 24(4), 221–231.PubMedGoogle Scholar
  9. Aloe, L., Simone, M. D., & Properzi, F. (1999). Nerve growth factor: A neurotrophin with activity on cells of the immune system. Microscopy Research and Technique, 45(4–5), 285–291.PubMedGoogle Scholar
  10. Aloe, L., Alleva, E., & Fiore, M. (2002). Stress and nerve growth factor: Findings in animal models and humans. Pharmacology, Biochemistry, and Behavior, 73(1), 159–166.PubMedGoogle Scholar
  11. Anand, P. (1996). Neurotrophins and peripheral neuropathy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1338), 449–454.PubMedGoogle Scholar
  12. Arredondo, L. R., Deng, C., Ratts, R. B., Lovett-Racke, A. E., Holtzman, D. M., & Racke, M. K. (2001). Role of nerve growth factor in experimental autoimmune encephalomyelitis. European Journal of Immunology, 31(2), 625–633.PubMedGoogle Scholar
  13. Asahina, A., Hosoi, J., Murphy, G. F., & Granstein, R. D. (1995). Calcitonin gene-related peptide modulates Langerhans cell antigen-presenting function. Proceedings of the Association of American Physicians, 107(2), 242–244.PubMedGoogle Scholar
  14. Auffray, I., Chevalier, S., Froger, J., Izac, B., Vainchenker, W., Gascan, H., & Coulombel, L. (1996). Nerve growth factor is involved in the supportive effect by bone marrow–derived stromal cells of the factor-dependent human cell line UT-7. Blood, 88(5), 1608–1618.PubMedGoogle Scholar
  15. Barada, K. A., Mourad, F. H., Sawah, S. I., Khoury, C., Safieh-Garabedian, B., Nassar, C. F., Tawil, A., Jurjus, A., & Saade, N. E. (2007). Up-regulation of nerve growth factor and interleukin-10 in inflamed and non-inflamed intestinal segments in rats with experimental colitis. Cytokine, 37(3), 236–245.PubMedGoogle Scholar
  16. Barouch, R., Kazimirsky, G., Appel, E., & Brodie, C. (2001). Nerve growth factor regulates TNF-alpha production in mouse macrophages via MAP kinase activation. Journal of Leukocyte Biology, 69(6), 1019–1026.PubMedGoogle Scholar
  17. Beattie, M. S., Harrington, A. W., Lee, R., Kim, J. Y., Boyce, S. L., Longo, F. M., Bresnahan, J. C., Hempstead, B. L., & Yoon, S. O. (2002). ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron, 36, 375–386.PubMedPubMedCentralGoogle Scholar
  18. Beigelman, A., Levy, J., Hadad, N., Pinsk, V., Haim, A., Fruchtman, Y., & Levy, R. (2009). Abnormal neutrophil chemotactic activity in children with congenital insensitivity to pain with anhidrosis (CIPA): The role of nerve growth factor. Clinical Immunology, 130(3), 365–372.PubMedGoogle Scholar
  19. Bennett, G., al-Rashed, S., Hoult, J. R., & Brain, S. D. (1998). Nerve growth factor induced hyperalgesia in the rat hind paw is dependent on circulating neutrophils. Pain, 77(3), 315–322.PubMedGoogle Scholar
  20. Bischoff, S. C., & Dahinden, C. A. (1992). Effect of nerve growth factor on the release of inflammatory mediators by mature human basophils. Blood, 79(10), 2662–2669.PubMedGoogle Scholar
  21. Boisse, L., Chisholm, S. P., Lukewich, M. K., & Lomax, A. E. (2009). Clinical and experimental evidence of sympathetic neural dysfunction during inflammatory bowel disease. Clinical and Experimental Pharmacology & Physiology, 36(10), 1026–1033.Google Scholar
  22. Bonini, S., Lambiase, A., Angelucci, F., Magrini, L., Manni, L., & Aloe, L. (1996). Circulating nerve growth factor levels are increased in humans with allergic diseases and asthma. Proceedings of the National Academy of Sciences of the United States of America, 93(20), 10955–10960.PubMedPubMedCentralGoogle Scholar
  23. Bonini, S., Lambiase, A., Bonini, S., Levi-Schaffer, F., & Aloe, L. (1999). Nerve growth factor: An important molecule in allergic inflammation and tissue remodelling. International Archives of Allergy and Immunology, 118(2–4), 159–162.PubMedGoogle Scholar
  24. Boyle, M. D., Lawman, M. J., Gee, A. P., & Young, M. (1985). Nerve growth factor: A chemotactic factor for polymorphonuclear leukocytes in vivo. Journal of Immunology, 134(1), 564–568.Google Scholar
  25. Bracci-Laudiero, L., Aloe, L., Levi-Montalcini, R., Buttinelli, C., Schilter, D., Gillessen, S., & Otten, U. (1992). Multiple sclerosis patients express increased levels of beta-nerve growth factor in cerebrospinal fluid. Neuroscience Letters, 147(1), 9–12.Google Scholar
  26. Bracci-Laudiero, L., Aloe, L., Levi-Montalcini, R., Galeazzi, M., Schilter, D., Scully, J. L., & Otten, U. (1993a). Increased levels of NGF in sera of systemic lupus erythematosus patients. Neuroreport, 4(5), 563–565.PubMedGoogle Scholar
  27. Bracci-Laudiero, L., Vigneti, E., Iannicola, C., & Aloe, L. (1993b). NGF retards apoptosis in chick embryo bursal cell in vitro. Differentiation, 53(2), 61–66.PubMedGoogle Scholar
  28. Bracci-Laudiero, L., Aloe, L., Stenfors, C., Tirassa, P., Theodorsson, E., & Lundberg, T. (1996a). Nerve growth factor stimulates production of neuropeptide Y in human lymphocytes. Neuroreport, 7(2), 485–488.PubMedGoogle Scholar
  29. Bracci-Laudiero, L., Lundeberg, T., Stenfors, C., Theodorsson, E., Tirassa, P., & Aloe, L. (1996b). Modification of lymphoid and brain nerve growth factor levels in systemic lupus erythematosus mice. Neuroscience Letters, 204(1–2), 13–16.PubMedGoogle Scholar
  30. Bracci-Laudiero, L., Aloe, L., Buanne, P., Finn, A., Stenfors, C., Vigneti, E., Theodorsson, E., & Lundeberg, T. (2002). NGF modulates CGRP synthesis in human B-lymphocytes: A possible anti-inflammatory action of NGF? Journal of Neuroimmunology, 123(1–2), 58–65.PubMedGoogle Scholar
  31. Bracci-Laudiero, L., Celestino, D., Starace, G., Antonelli, A., Lambiase, A., Procoli, A., Rumi, C., Lai, M., Picardi, A., Ballatore, G., Bonini, S., & Aloe, L. (2003). CD34-positive cells in human umbilical cord blood express nerve growth factor and its specific receptor TrkA. Journal of Neuroimmunology, 136(1–2), 130–139.PubMedGoogle Scholar
  32. Bracci-Laudiero, L., Aloe, L., Caroleo, M. C., Buanne, P., Costa, N., Starace, G., & Lundeberg, T. (2005). Endogenous NGF regulates CGRP expression in human monocytes, and affects HLA-DR and CD86 expression and IL-10 production. Blood, 106(10), 3507–3514.PubMedGoogle Scholar
  33. Brain, S. D. (1997). Sensory neuropeptides: Their role in inflammation and wound healing. Immunopharmacology, 37(2–3), 133–152.PubMedGoogle Scholar
  34. Braun, A., Appel, E., Baruch, R., Herz, U., Botchkarev, V., Paus, R., Brodie, C., & Renz, H. (1998). Role of nerve growth factor in a mouse model of allergic airway inflammation and asthma. European Journal of Immunology, 28(10), 3240–3251.PubMedGoogle Scholar
  35. Brodie, C., & Gelfand, E. W. (1992). Functional nerve growth factor receptors on human B lymphocytes. Interaction with IL-2. Journal of Immunology, 148(11), 3492–3497.Google Scholar
  36. Brodie, C., & Gelfand, E. W. (1994). Regulation of immunoglobulin production by nerve growth factor: Comparison with anti-CD40. Journal of Neuroimmunology, 52(1), 87–96.PubMedGoogle Scholar
  37. Brodie, C., Oshiba, A., Renz, H., Bradley, K., & Gelfand, E. W. (1996). Nerve growth-factor and anti-CD40 provide opposite signals for the production of IgE in interleukin-4-treated lymphocytes. European Journal of Immunology, 26(1), 171–178.PubMedGoogle Scholar
  38. Bruno, M. A., & Cuello, A. C. (2006). Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6735–6740.PubMedPubMedCentralGoogle Scholar
  39. Bullo, M., Peeraully, M. R., & Trayhurn, P. (2005). Stimulation of NGF expression and secretion in 3T3-L1 adipocytes by prostaglandins PGD2, PGJ2, and Delta12-PGJ2. American Journal of Physiology. Endocrinology and Metabolism, 289(1), E62–E67.PubMedGoogle Scholar
  40. Bullock, E. D., & Johnson, E. M. (1996). Nerve growth factor induces the expression of certain cytokine genes and bcl-2 in mast cells. Potential role in survival promotion. Journal of Biological Chemistry, 271(44), 27500–27508.PubMedGoogle Scholar
  41. Burgi, B., Otten, U. H., Ochensberger, B., Rihs, S., Heese, K., Ehrhard, P. B., Ibanez, C. F., & Dahinden, C. A. (1996). Basophil priming by neurotrophic factors. Activation through the trk receptor. Journal of Immunology, 157(12), 5582–5588.Google Scholar
  42. Caroleo, M. C., Costa, N., Bracci-Laudiero, L., & Aloe, L. (2001). Human monocyte/macrophages activate by exposure to LPS overexpress NGF and NGF receptors. Journal of Neuroimmunology, 113(2), 193–201.PubMedGoogle Scholar
  43. Carr, M. J., & Undem, B. J. (2001). Inflammation-induced plasticity of the afferent innervation of the airways. Environmental Health Perspectives, 109(Suppl 4), 567–571.PubMedPubMedCentralGoogle Scholar
  44. Carucci, J. A., Ignatius, R., Wei, Y., Cypess, A. M., Schaer, D. A., Pope, M., Steinman, R. M., & Mojsov, S. (2000). Calcitonin gene-related peptide decreases expression of HLA-DR and CD86 by human dendritic cells and dampens dendritic cell-driven T cell-proliferative responses via the type I calcitonin gene-related peptide receptor. Journal of Immunology, 164(7), 3494–3499.Google Scholar
  45. Cattoretti, G., Schiro, R., Orazi, A., Soligo, D., & Colombo, M. P. (1993). Bone marrow stroma in humans: Anti-nerve growth factor receptor antibodies selectively stain reticular cells in vivo and in vitro. Blood, 81(7), 1726–1738.PubMedGoogle Scholar
  46. Chao, M. V., Rajagopal, R., & Lee, F. S. (2006). Neurotrophin signalling in health and disease. Clinical Science (London, England), 110(2), 167–173.Google Scholar
  47. Chevalier, S., Praloran, V., Smith, C., MacGrogan, D., Ip, N. Y., Yancopoulos, G. D., Brachet, P., Pouplard, A., & Gascan, H. (1994). Expression and functionality of the trkA proto-oncogene product/NGF receptor in undifferentiated hematopoietic cells. Blood, 83(6), 1479–1485.PubMedGoogle Scholar
  48. Christianson, J. A., Riekhof, J. T., & Wright, D. E. (2003). Restorative effects of neurotrophin treatment on diabetes-induced cutaneous axon loss in mice. Experimental Neurology, 179(2), 188–199.PubMedGoogle Scholar
  49. Ciriaco, E., Dall’Aglio, C., Hannestad, J., Huerta, J. J., Laura, R., Germana, G., & Vega, J. A. (1996). Localization of Trk neurotrophin receptor-like proteins in avian primary lymphoid organs (thymus and bursa of Fabricius). Journal of Neuroimmunology, 69(1–2), 73–83.PubMedGoogle Scholar
  50. Connor, B., & Dragunow, M. (1998). The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Research. Brain Research Reviews, 27(1), 1–39.PubMedGoogle Scholar
  51. Coppola, V., Barrick, C. A., Southon, E. A., Celeste, A., Wang, K., Chen, B., Haddad el, B., Yin, J., Nussenzweig, A., Subramaniam, A., & Tessarollo, L. (2004). Ablation of TrkA function in the immune system causes B cell abnormalities. Development, 131(20), 5185–5195.PubMedGoogle Scholar
  52. Cowan, W. M. (2001). Viktor Hamburger and Rita Levi-Montalcini: The path to the discovery of nerve growth factor. Annual Review of Neuroscience, 24, 551–600.PubMedGoogle Scholar
  53. Dallos, A., Kiss, M., Polyanka, H., Dobozy, A., Kemeny, L., & Husz, S. (2006). Effects of the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide and galanin on the production of nerve growth factor and inflammatory cytokines in cultured human keratinocytes. Neuropeptides, 40(4), 251–263.PubMedGoogle Scholar
  54. De Simone, R., Micera, A., Tirassa, P., & Aloe, L. (1996). mRNA for NGF and p75 in the central nervous system of rats affected by experimental allergic encephalomyelitis. Neuropathology and Applied Neurobiology, 22(1), 54–59.PubMedGoogle Scholar
  55. Delgado, M., Pozo, D., & Ganea, D. (2004). The significance of vasoactive intestinal peptide in immunomodulation. Pharmacological Reviews, 56(2), 249–290.PubMedGoogle Scholar
  56. di Mola, F. F., Friess, H., Zhu, Z. W., Koliopanos, A., Bley, T., Di Sebastiano, P., Innocenti, P., Zimmermann, A., & Buchler, M. W. (2000). Nerve growth factor and Trk high affinity receptor (TrkA) gene expression in inflammatory bowel disease. Gut, 46(5), 670–679.PubMedGoogle Scholar
  57. Dirmeier, M., Capellino, S., Schubert, T., Angele, P., Anders, S., & Straub, R. H. (2008). Lower density of synovial nerve fibres positive for calcitonin gene-related peptide relative to substance P in rheumatoid arthritis but not in osteoarthritis. Rheumatology (Oxford, England), 47(1), 36–40.Google Scholar
  58. Donnerer, J., Schuligoi, R., & Stein, C. (1992). Increased content and transport of substance P and calcitonin gene-related peptide in sensory nerves innervating inflamed tissue: Evidencefor a regulatory function of nerve growth factor in vivo. Neuroscience, 49(3), 693–698.PubMedGoogle Scholar
  59. Ehrhard, P. B., Erb, P., Graumann, U., & Otten, U. (1993a). Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proceedings of the National Academy of Sciences of the United States of America, 90(23), 10984–10988.PubMedPubMedCentralGoogle Scholar
  60. Ehrhard, P. B., Ganter, U., Stalder, A., Bauer, J., & Otten, U. (1993b). Expression of functional trk protooncogene in human monocytes. Proceedings of the National Academy of Sciences of the United States of America, 90(12), 5423–5427.PubMedPubMedCentralGoogle Scholar
  61. Elenkov, I. J. (2008). Neurohormonal-cytokine interactions: Implications for inflammation, common human diseases and well-being. Neurochemistry International, 52(1–2), 40–51.PubMedGoogle Scholar
  62. Ernfors, P. (2001). Local and target-derived actions of neurotrophins during peripheral nervous system development. Cellular and Molecular Life Sciences, 58(8), 1036–1044.PubMedGoogle Scholar
  63. Fahnestock, M., Yu, G., & Coughlin, M. D. (2004). ProNGF: A neurotrophic or an apoptotic molecule? Progress in Brain Research, 146, 101–110.PubMedGoogle Scholar
  64. Fantini, F., Magnoni, C., Bracci-Laudiero, L., & Pincelli, C. T. (1995). Nerve growth factor is increased in psoriatic skin. Journal of Investigative Dermatology, 105(6), 854–855.PubMedGoogle Scholar
  65. Flugel, A., Matsumuro, K., Neumann, H., Klinkert, W. E., Birnbacher, R., Lassmann, H., Otten, U., & Wekerle, H. (2001). Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: Inhibition of monocyte transendothelial migration. European Journal of Immunology, 31(1), 11–22.PubMedGoogle Scholar
  66. Foster, P. A., Costa, S. K., Poston, R., Hoult, J. R., & Brain, S. D. (2003). Endothelial cells play an essential role in the thermal hyperalgesia induced by nerve growth factor. The FASEB Journal, 17(12), 1703–1705.Google Scholar
  67. Franklin, R. A., Brodie, C., Melamed, I., Terada, N., Lucas, J. J., & Gelfand, E. W. (1995). Nerve growth factor induces activation of MAP-kinase and p90rsk in human B lymphocytes. Journal of Immunology, 154(10), 4965–4972.Google Scholar
  68. Friedman, W. J., & Greene, L. A. (1999). Neurotrophin signaling via Trks and p75. Experimental Cell Research, 253(1), 131–142.PubMedGoogle Scholar
  69. Friedman, W. J., Larkfors, L., Ayer-LeLievre, C., Ebendal, T., Olson, L., & Persson, H. (1990). Regulation of beta-nerve growth factor expression by inflammatory mediators in hippocampal cultures. Journal of Neuroscience Research, 27(3), 374–382.PubMedGoogle Scholar
  70. Gadient, R. A., Cron, K. C., & Otten, U. (1990). Interleukin-1 beta and tumor necrosis factor-alpha synergistically stimulate nerve growth factor (NGF) release from cultured rat astrocytes. Neuroscience Letters, 117(3), 335–340.PubMedGoogle Scholar
  71. Garcia-Suarez, O., Germana, A., Hannestad, J., Ciriaco, E., Silos-Santiago, I., Germana, G., & Vega, J. A. (2001). Involvement of the NGF receptors (Trka and p75lngfr) in the development and maintenance of the thymus. Italian Journal of Anatomy and Embryology, 106(2 Suppl 1), 279–285.PubMedGoogle Scholar
  72. Gee, A. P., Boyle, M. D., Munger, K. L., Lawman, M. J., & Young, M. (1983). Nerve growth factor: Stimulation of polymorphonuclear leukocyte chemotaxis in vitro. Proceedings of the National Academy of Sciences of the United States of America, 80(23), 7215–7218.PubMedPubMedCentralGoogle Scholar
  73. Gibbs, B. F., Zillikens, D., & Grabbe, J. (2005). Nerve growth factor influences IgE-mediated human basophil activation: Functional properties and intracellular mechanisms compared with IL-3. International Immunopharmacology, 5(4), 735–747.PubMedGoogle Scholar
  74. Gillardon, F., Eschenfelder, C., Rush, R. A., & Zimmerman, M. (1995). Increase in neuronal Jun immunoreactivity and epidermal NGF levels following UV exposure of rat skin. Neuroreport, 6(9), 1322–1324.PubMedGoogle Scholar
  75. Gomes, R. N., Castro-Faria-Neto, H. C., Bozza, P. T., Soares, M. B., Shoemaker, C. B., David, J. R., & Bozza, M. T. (2005). Calcitonin gene-related peptide inhibits local acute inflammation and protects mice against lethal endotoxemia. Shock, 24(6), 590–594.PubMedGoogle Scholar
  76. Hamada, A., Watanabe, N., Ohtomo, H., & Matsuda, H. (1996). Nerve growth factor enhances survival and cytotoxic activity of human eosinophils. British Journal of Haematology, 93(2), 299–302.PubMedGoogle Scholar
  77. Harrington, A. W., Leiner, B., Blechschmitt, C., Arevalo, J. C., Lee, R., Morl, K., Meyer, M., Hempstead, B. L., Yoon, S. O., & Giehl, K. M. (2004). Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Procedings of National Acadamy of Science USA, 101, 6226–6230.Google Scholar
  78. Harzenetter, M. D., Novotny, A. R., Gais, P., Molina, C. A., Altmayr, F., & Holzmann, B. (2007). Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER. Journal of Immunology, 179(1), 607–615.Google Scholar
  79. Hattori, A., Iwasaki, S., Murase, K., Tsujimoto, M., Sato, M., Hayashi, K., & Kohno, M. (1994). Tumor necrosis factor is markedly synergistic with interleukin 1 and interferon-gamma in stimulating the production of nerve growth factor in fibroblasts. FEBS Letters, 340(3), 177–180.PubMedGoogle Scholar
  80. Heese, K., Inoue, N., & Sawada, T. (2006). NF-kappaB regulates B-cell-derived nerve growth factor expression. Cellular and molecular immunology, 3(1), 63–66.PubMedGoogle Scholar
  81. Hellweg, R., & Hartung, H. D. (1990). Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: A possible role for NGF in the pathogenesis of diabetic neuropathy. Journal of Neuroscience Research, 26(2), 258–267.PubMedGoogle Scholar
  82. Holzer, P. (2007). Role of visceral afferent neurons in mucosal inflammation and defense. Current Opinion in Pharmacology, 7(6), 563–569.PubMedGoogle Scholar
  83. Horigome, K., Pryor, J. C., Bullock, E. D., & Johnson, E. M., Jr. (1993). Mediator release from mast cells by nerve growth factor. Neurotrophin specificity and receptor mediation. Journal of Biological Chemistry, 268(20), 14881–14887.PubMedGoogle Scholar
  84. Hosoi, J., Murphy, G. F., Egan, C. L., Lerner, E. A., Grabbe, S., Asahina, A., & Granstein, R. D. (1993). Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature, 363(6425), 159–163.PubMedGoogle Scholar
  85. Huang, E. J., & Reichardt, L. F. (2003). Trk receptors: Roles in neuronal signal transduction. Annual Review of Biochemistry, 72, 609–642.PubMedGoogle Scholar
  86. Jacobs, B. L., Smaldone, M. C., Tyagi, V., Philips, B. J., Jackman, S. V., Leng, W. W., & Tyagi, P. (2010). Increased nerve growth factor in neurogenic overactive bladder and interstitial cystitis patients. The Canadian Journal of Urology, 17(1), 4989–4994.PubMedGoogle Scholar
  87. Jansen, P., Giehl, K., Nyengaard, J. R., Teng, K., Lioubinski, O., Sjoegaard, S. S., Breiderhoff, T., Gotthardt, M., Lin, F., Eilers, A., Petersen, C. M., Lewin, G. R., Hempstead, B. L., Willnow, T. E., & Nykjaer, A. (2007). Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nature Neuroscience, 10, 1449–1457.PubMedGoogle Scholar
  88. Kannan, Y., Ushio, H., Koyama, H., Okada, M., Oikawa, M., Yoshihara, T., Kaneko, M., & Matsuda, H. (1991). 2.5S nerve growth factor enhances survival, phagocytosis, and superoxide production of murine neutrophils. Blood, 77(6), 1320–1325.PubMedGoogle Scholar
  89. Kawamoto, K., Okada, T., Kannan, Y., Ushio, H., Matsumoto, M., & Matsuda, H. (1995). Nerve growth factor prevents apoptosis of rat peritoneal mast cells through the trk proto-oncogene receptor. Blood, 86(12), 4638–4644.PubMedGoogle Scholar
  90. Kimata, H., Yoshida, A., Ishioka, C., Kusunoki, T., Hosoi, S., & Mikawa, H. (1991). Nerve growth factor specifically induces human IgG4 production. European Journal of Immunology, 21(1), 137–141.PubMedGoogle Scholar
  91. Klesse, L. J., & Parada, L. F. (1999). Trks: Signal transduction and intracellular pathways. Microscopy Research and Technique, 45(4–5), 210–216.PubMedGoogle Scholar
  92. Kobayashi, H., Gleich, G. J., Butterfield, J. H., & Kita, H. (2002). Human eosinophils produce neurotrophins and secrete nerve growth factor on immunologic stimuli. Blood, 99(6), 2214–2220.PubMedGoogle Scholar
  93. Kossmann, T., Hans, V., Imhof, H. G., Trentz, O., & Morganti-Kossmann, M. C. (1996). Interleukin-6 released in human cerebrospinal fluid following traumatic brain injury may trigger nerve growth factor production in astrocytes. Brain Research, 713(1–2), 143–152.PubMedGoogle Scholar
  94. Kroeger, I., Erhardt, A., Abt, D., Fischer, M., Biburger, M., Rau, T., Neuhuber, W. L., & Tiegs, G. (2009). The neuropeptide calcitonin gene-related peptide (CGRP) prevents inflammatory liver injury in mice. Journal of Hepatology, 51(2), 342–353.PubMedGoogle Scholar
  95. la Sala, A., Corinti, S., Federici, M., Saragovi, H. U., & Girolomoni, G. (2000). Ligand activation of nerve growth factor receptor TrkA protects monocytes from apoptosis. Journal of Leukocyte Biology, 68(1), 104–110.PubMedGoogle Scholar
  96. Lambiase, A., Bonini, S., Bonini, S., Micera, A., Magrini, L., Bracci-Laudiero, L., & Aloe, L. (1995). Increased plasma levels of nerve growth factor in vernal keratoconjunctivitis and relationship to conjunctival mast cells. Investigative Ophthalmology & Visual Science, 36(10), 2127–2132.Google Scholar
  97. Lambiase, A., Bracci-Laudiero, L., Bonini, S., Bonini, S., Starace, G., D’Elios, M. M., De Carli, M., & Aloe, L. (1997). Human CD4+ T cell clones produce and release nerve growth factor and express high-affinity nerve growth factor receptors. The Journal of Allergy and Clinical Immunology, 100(3), 408–414.PubMedGoogle Scholar
  98. Laurenzi, M. A., Barbany, G., Timmusk, T., Lindgren, J. A., & Persson, H. (1994). Expression of mRNA encoding neurotrophins and neurotrophin receptors in rat thymus, spleen tissue and immunocompetent cells. Regulation of neurotrophin-4 mRNA expression by mitogens and leukotriene B4. European Journal of Biochemistry, 223(3), 733–741.PubMedGoogle Scholar
  99. Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294(5548), 1945–1948.PubMedGoogle Scholar
  100. Lee, H. W., Na, Y. J., Jung, P. K., Kim, M. N., Kim, S. M., Chung, J. S., Kim, B. S., Kim, J. B., Moon, J. O., & Yoon, S. (2008). Nerve growth factor stimulates proliferation, adhesion and thymopoietic cytokine expression in mouse thymic epithelial cells in vitro. Regulatory Peptides, 147(1–3), 72–81.PubMedGoogle Scholar
  101. Legat, F. J., Jaiani, L. T., Wolf, P., Wang, M., Lang, R., Abraham, T., Solomon, A. R., Armstrong, C. A., Glass, J. D., & Ansel, J. C. (2004). The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure. Experimental Dermatology, 13(4), 242–250.PubMedGoogle Scholar
  102. Levi-Montalcini, R. (1987). The nerve growth factor: Thirty-five years later. Science, 237, 1154–1162.PubMedGoogle Scholar
  103. Lindholm, D., Heumann, R., Meyer, M., & Thoenen, H. (1987). Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature, 330(6149), 658–659.PubMedGoogle Scholar
  104. Lindsay, R. M., & Harmar, A. J. (1989). Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature, 337(6205), 362–364.PubMedGoogle Scholar
  105. Lipnik-Stangelj, M., & Carman-Krzan, M. (2004a). Activation of histamine H1-receptor enhances neurotrophic factor secretion from cultured astrocytes. Inflammation Research, 53(6), 245–252.PubMedGoogle Scholar
  106. Lipnik-Stangelj, M., & Carman-Krzan, M. (2004b). Histamine-stimulated nerve growth factor secretion from cultured astrocyctes is blocked by protein kinase C inhibitors. Inflammation Research, 53(Suppl 1), S57–S58.PubMedGoogle Scholar
  107. Lowe, E. M., Anand, P., Terenghi, G., Williams-Chestnut, R. E., Sinicropi, D. V., & Osborne, J. L. (1997). Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. British Journal of Urology, 79(4), 572–577.PubMedGoogle Scholar
  108. Ma, D., Wolvers, D., Stanisz, A. M., & Bienenstock, J. (2003). Interleukin-10 and nerve growth factor have reciprocal upregulatory effects on intestinal epithelial cells. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 284(5), R1323–R1329.PubMedGoogle Scholar
  109. Ma, W., Dumont, Y., Vercauteren, F., & Quirion, R. (2010). Lipopolysaccharide induces calcitonin gene-related peptide in the RAW264.7 macrophage cell line. Immunology, 130(3), 399–409.PubMedPubMedCentralGoogle Scholar
  110. Manni, L., & Aloe, L. (1998). Role of IL-1 beta and TNF-alpha in the regulation of NGF in experimentally induced arthritis in mice. Rheumatology International, 18(3), 97–102.PubMedGoogle Scholar
  111. Manni, L., Lundeberg, T., Fiorito, S., Bonini, S., Vigneti, E., & Aloe, L. (2003). Nerve growth factor release by human synovial fibroblasts prior to and following exposure to tumor necrosis factor-alpha, interleukin-1 beta and cholecystokinin-8: The possible role of NGF in the inflammatory response. Clinical and Experimental Rheumatology, 21(5), 617–624.PubMedGoogle Scholar
  112. Marz, P., Heese, K., Dimitriades-Schmutz, B., Rose-John, S., & Otten, U. (1999). Role of interleukin-6 and soluble IL-6 receptor in region-specific induction of astrocytic differentiation and neurotrophin expression. Glia, 26(3), 191–200.PubMedGoogle Scholar
  113. Matsuda, H., Coughlin, M. D., Bienenstock, J., & Denburg, J. A. (1988). Nerve growth factor promotes human hemopoietic colony growth and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 85(17), 6508–6512.PubMedPubMedCentralGoogle Scholar
  114. Matsuda, H., Kannan, Y., Ushio, H., Kiso, Y., Kanemoto, T., Suzuki, H., & Kitamura, Y. (1991). Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. Journal of Experimental Medicine, 174(1), 7–14.PubMedGoogle Scholar
  115. Matsuda, H., Koyama, H., Sato, H., Sawada, J., Itakura, A., Tanaka, A., Matsumoto, M., Konno, K., Ushio, H., & Matsuda, K. (1998). Role of nerve growth factor in cutaneous wound healing: Accelerating effects in normal and healing-impaired diabetic mice. Journal of Experimental Medicine, 187(3), 297–306.PubMedPubMedCentralGoogle Scholar
  116. Mazella, J. (2001). Sortilin/neurotensin receptor-3: A new tool to investigate neurotensin signaling and cellular trafficking? Cellular Signalling, 13(1), 1–6.PubMedGoogle Scholar
  117. Mazurek, N., Weskamp, G., Erne, P., & Otten, U. (1986). Nerve growth factor induces mast cell degranulation without changing intracellular calcium levels. FEBS Letters, 198(2), 315–320.PubMedGoogle Scholar
  118. McAllister, A. K. (2001). Neurotrophins and neuronal differentiation in the central nervous system. Cellular and Molecular Life Sciences, 58(8), 1054–1060.PubMedGoogle Scholar
  119. McMahon, S. B., Bennett, D. L., Priestley, J. V., & Shelton, D. L. (1995). The biological effects of endogenous nerve growth factor on adult sensory neurons revealed by a trkA-IgG fusion molecule. Nature Medicine, 1(8), 774–780.PubMedGoogle Scholar
  120. Mearow, K. M., & Kril, Y. (1995). Anti-NGF treatment blocks the upregulation of NGF receptor mRNA expression associated with collateral sprouting of rat dorsal root ganglion neurons. Neuroscience Letters, 184(1), 55–58.PubMedGoogle Scholar
  121. Mearowa, K. M., & Kril, Y. (1995). Anti-NGF treatment blocks the upregulation of NGF receptor mRNA expression associated with collateral sprouting of rat dorsal root ganglion neurons. Neuroscience Letters, 184(1), 55–58.Google Scholar
  122. Melamed, I., Kelleher, C. A., Franklin, R. A., Brodie, C., Hempstead, B., Kaplan, D., & Gelfand, E. W. (1996). Nerve growth factor signal transduction in human B lymphocytes is mediated by gp140trk. European Journal of Immunology, 26(9), 1985–1992.PubMedGoogle Scholar
  123. Micera, A., Properzi, F., Triaca, V., & Aloe, L. (2000). Nerve growth factor antibody exacerbates neuropathological signs of experimental allergic encephalomyelitis in adult lewis rats. Journal of Neuroimmunology, 104(2), 116–123.PubMedGoogle Scholar
  124. Miller, F. D., & Kaplan, D. R. (2001). Neurotrophin signalling pathways regulating neuronal apoptosis. Cellular and Molecular Life Sciences, 58(8), 1045–1053.PubMedGoogle Scholar
  125. Millet, I., Phillips, R. J., Sherwin, R. S., Ghosh, S., Voll, R. E., Flavell, R. A., Vignery, A., & Rincon, M. (2000). Inhibition of NF-kappaB activity and enhancement of apoptosis by the neuropeptide calcitonin gene-related peptide. Journal of Biological Chemistry, 275(20), 15114–15121.PubMedGoogle Scholar
  126. Moser, K. V., Reindl, M., Blasig, I., & Humpel, C. (2004). Brain capillary endothelial cells proliferate in response to NGF, express NGF receptors and secrete NGF after inflammation. Brain Research, 1017(1–2), 53–60.PubMedGoogle Scholar
  127. Murakami, M., Tada, K., Nakajima, K., & Kudo, I. (1997). Cyclooxygenase-2-dependent delayed prostaglandin D2 generation is initiated by nerve growth factor in rat peritoneal mast cells: Its augmentation by extracellular type II secretory phospholipase A2. Journal of Immunology, 159(1), 439–446.Google Scholar
  128. Nilsson, G., Forsberg-Nilsson, K., Xiang, Z., Hallbook, F., Nilsson, K., & Metcalfe, D. D. (1997). Human mast cells express functional TrkA and are a source of nerve growth factor. European Journal of Immunology, 27(9), 2295–2301.PubMedGoogle Scholar
  129. Noga, O., Englmann, C., Hanf, G., Grutzkau, A., Guhl, S., & Kunkel, G. (2002). Activation of the specific neurotrophin receptors TrkA, TrkB and TrkC influences the function of eosinophils. Clinical and Experimental Allergy, 32(9), 1348–1354.PubMedGoogle Scholar
  130. Noga, O., Peiser, M., Altenahr, M., Knieling, H., Wanner, R., Hanf, G., Grosse, R., & Suttorp, N. (2007). Differential activation of dendritic cells by nerve growth factor and brain-derived neurotrophic factor. Clinical and Experimental Allergy, 37(11), 1701–1708.PubMedGoogle Scholar
  131. O’Connor, T. M., O’Connell, J., O’Brien, D. I., Goode, T., Bredin, C. P., & Shanahan, F. (2004). The role of substance P in inflammatory disease. Journal of Cellular Physiology, 201(2), 167–180.PubMedGoogle Scholar
  132. Olgart, C., & Frossard, N. (2001). Human lung fibroblasts secrete nerve growth factor: Effect of inflammatory cytokines and glucocorticoids. European Respiratory Journal, 18(1), 115–121.PubMedGoogle Scholar
  133. Olson, L. (1993). Reparative strategies in the brain: Treatment strategies based on trophic factors and cell transfer techniques. Acta Neurochir Suppl (Wien), 58, 3–7.Google Scholar
  134. Otten, U., Schwab, M., Gagnon, C., & Thoenen, H. (1977). Selective induction of tyrosine hydroxylase and dopamine beta-hydroxylase by nerve growth factor: Comparison between adrenal medulla and sympathetic ganglia of adult and newborn rats. Brain Research, 133(2), 291–303.PubMedGoogle Scholar
  135. Otten, U., Ehrhard, P., & Peck, R. (1989). Nerve growth factor induces growth and differentiation of human B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 86(24), 10059–10063.PubMedPubMedCentralGoogle Scholar
  136. Peleshok, J. C., & Ribeiro-da-Silva, A. (2012). Neurotrophic factor changes in the rat thick skin following chronic constriction injury of the sciatic nerve. Molecular Pain, 8, 1.PubMedPubMedCentralGoogle Scholar
  137. Pezzati, P., Stanisz, A. M., Marshall, J. S., Bienenstock, J., & Stead, R. H. (1992). Expression of nerve growth factor receptor immunoreactivity on follicular dendritic cells from human mucosa associated lymphoid tissues. Immunology, 76(3), 485–490.PubMedPubMedCentralGoogle Scholar
  138. Poo, M. M. (2001). Neurotrophins as synaptic modulators. Nature Reviews. Neuroscience, 2(1), 24–32.PubMedGoogle Scholar
  139. Prod’homme, T., Weber, M. S., Steinman, L., & Zamvil, S. S. (2006). A neuropeptide in immune-mediated inflammation, Y? Trends in Immunology, 27(4), 164–167.PubMedGoogle Scholar
  140. Quarcoo, D., Schulte-Herbruggen, O., Lommatzsch, M., Schierhorn, K., Hoyle, G. W., Renz, H., & Braun, A. (2004). Nerve growth factor induces increased airway inflammation via a neuropeptide-dependent mechanism in a transgenic animal model of allergic airway inflammation. Clinical and Experimental Allergy, 34(7), 1146–1151.PubMedGoogle Scholar
  141. Raud, J., Lundeberg, T., Brodda-Jansen, G., Theodorsson, E., & Hedqvist, P. (1991). Potent anti-inflammatory action of calcitonin gene-related peptide. Biochemical and Biophysical Research Communications, 180(3), 1429–1435.PubMedGoogle Scholar
  142. Raychaudhuri, S. P., Jiang, W. Y., & Farber, E. M. (1998). Psoriatic keratinocytes express high levels of nerve growth factor. Acta Dermato-Venereologica, 78(2), 84–86.PubMedGoogle Scholar
  143. Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361(1473), 1545–1564.PubMedPubMedCentralGoogle Scholar
  144. Reinshagen, M., Patel, A., Sottili, M., Nast, C., Davis, W., Mueller, K., & Eysselein, V. (1994). Protective function of extrinsic sensory neurons in acute rabbit experimental colitis. Gastroenterology, 106(5), 1208–1214.PubMedGoogle Scholar
  145. Reinshagen, M., Flamig, G., Ernst, S., Geerling, I., Wong, H., Walsh, J. H., Eysselein, V. E., & Adler, G. (1998). Calcitonin gene-related peptide mediates the protective effect of sensory nerves in a model of colonic injury. Journal of Pharmacology and Experimental Therapeutics, 286(2), 657–661.PubMedGoogle Scholar
  146. Reinshagen, M., Rohm, H., Steinkamp, M., Lieb, K., Geerling, I., Von Herbay, A., Flamig, G., Eysselein, V. E., & Adler, G. (2000). Protective role of neurotrophins in experimental inflammation of the rat gut. Gastroenterology, 119(2), 368–376.PubMedGoogle Scholar
  147. Rogers, M. L., Bailey, S., Matusica, D., Nicholson, I., Muyderman, H., Pagadala, P. C., Neet, K. E., Zola, H., Macardle, P., & Rush, R. A. (2010). ProNGF mediates death of natural killer cells through activation of the p75NTR-sortilin complex. Journal of Neuroimmunology, 226(1–2), 93–103.PubMedPubMedCentralGoogle Scholar
  148. Rook, G. A., Lightman, S. L., & Heijnen, C. J. (2002). Can nerve damage disrupt neuroendocrine immune homeostasis? Leprosy as a case in point. Trends in Immunology, 23(1), 18–22.PubMedGoogle Scholar
  149. Roux, P. P., & Barker, P. A. (2002). Neurotrophin signaling through the p75 neurotrophin receptor. Progress in Neurobiology, 67, 203–233.PubMedGoogle Scholar
  150. Ruit, K. G., Osborne, P. A., Schmidt, R. E., Johnson, E. M., Jr., & Snider, W. D. (1990). Nerve growth factor regulates sympathetic ganglion cell morphology and survival in the adult mouse. Journal of Neuroscience, 10(7), 2412–2419.PubMedGoogle Scholar
  151. Rush, R. A., Chie, E., Liu, D., Tafreshi, A., Zettler, C., & Zhou, X. F. (1997). Neurotrophic factors are required by mature sympathetic neurons for survival, transmission and connectivity. Clinical and Experimental Pharmacology & Physiology, 24(8), 549–555.Google Scholar
  152. Ryan, V. H., German, A. J., Wood, I. S., Hunter, L., Morris, P., & Trayhurn, P. (2008). NGF gene expression and secretion by canine adipocytes in primary culture: Upregulation by the inflammatory mediators LPS and TNFalpha. Hormone and Metabolic Research, 40(12), 861–868.PubMedGoogle Scholar
  153. Safieh-Garabedian, B., Poole, S., Allchorne, A., Winter, J., & Woolf, C. J. (1995). Contribution of interleukin-1 beta to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. British Journal of Pharmacology, 115(7), 1265–1275.PubMedPubMedCentralGoogle Scholar
  154. Samah, B., Porcheray, F., Dereuddre-Bosquet, N., & Gras, G. (2009). Nerve growth factor stimulation promotes CXCL-12 attraction of monocytes but decreases human immunodeficiency virus replication in attracted population. Journal of Neurovirology, 15(1), 71–80.PubMedGoogle Scholar
  155. Sato, Y., Tsuboi, Y., Kurosawa, H., Sugita, K., & Eguchi, M. (2004). Anti-apoptotic effect of nerve growth factor is lost in congenital insensitivity to pain with anhidrosis (CIPA) B lymphocytes. Journal of Clinical Immunology, 24(3), 302–308.PubMedGoogle Scholar
  156. Sawada, J., Itakura, A., Tanaka, A., Furusaka, T., & Matsuda, H. (2000). Nerve growth factor functions as a chemoattractant for mast cells through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Blood, 95(6), 2052–2058.PubMedGoogle Scholar
  157. Schor, N. F. (2005). The p75 neurotrophin receptor in human development and disease. Progress in Neurobiology, 77(3), 201–214.PubMedGoogle Scholar
  158. Seidel, M. F., Herguijuela, M., Forkert, R., & Otten, U. (2010). Nerve growth factor in rheumatic diseases. Seminars in Arthritis and Rheumatism, 40(2), 109–126.PubMedGoogle Scholar
  159. Sin, A. Z., Roche, E. M., Togias, A., Lichtenstein, L. M., & Schroeder, J. T. (2001). Nerve growth factor or IL-3 induces more IL-13 production from basophils of allergic subjects than from basophils of nonallergic subjects. The Journal of Allergy and Clinical Immunology, 108(3), 387–393.PubMedGoogle Scholar
  160. Spinnler, K., Frohlich, T., Arnold, G. J., Kunz, L., & Mayerhofer, A. (2011). Human tryptase cleaves pro-nerve growth factor (pro-NGF): Hints of local, mast cell-dependent regulation of NGF/pro-NGF action. Journal of Biological Chemistry, 286(36), 31707–31713.PubMedPubMedCentralGoogle Scholar
  161. Stanzel, R. D., Lourenssen, S., & Blennerhassett, M. G. (2008). Inflammation causes expression of NGF in epithelial cells of the rat colon. Experimental Neurology, 211(1), 203–213.PubMedGoogle Scholar
  162. Steiner, P., Pfeilschifter, J., Boeckh, C., Radeke, H., & Otten, U. (1991). Interleukin-1 beta and tumor necrosis factor-alpha synergistically stimulate nerve growth factor synthesis in rat mesangial cells. American Journal of Physiology, 261(5 Pt 2), F792–F798.PubMedGoogle Scholar
  163. Straub, R. H. (2004). Complexity of the bi-directional neuroimmune junction in the spleen. Trends in Pharmacological Sciences, 25(12), 640–646.PubMedGoogle Scholar
  164. Susaki, Y., Shimizu, S., Katakura, K., Watanabe, N., Kawamoto, K., Matsumoto, M., Tsudzuki, M., Furusaka, T., Kitamura, Y., & Matsuda, H. (1996). Functional properties of murine macrophages promoted by nerve growth factor. Blood, 88(12), 4630–4637.PubMedGoogle Scholar
  165. Takafuji, S., Bischoff, S. C., De Weck, A. L., & Dahinden, C. A. (1992). Opposing effects of tumor necrosis factor-alpha and nerve growth factor upon leukotriene C4 production by human eosinophils triggered with N-formyl-methionyl-leucyl-phenylalanine. European Journal of Immunology, 22(4), 969–974.PubMedGoogle Scholar
  166. Tausk, F., Elenkov, I., & Moynihan, J. (2008). Psychoneuroimmunology. Dermatologic Therapy, 21(1), 22–31.PubMedGoogle Scholar
  167. Terenghi, G. (1999). Peripheral nerve regeneration and neurotrophic factors. Journal of Anatomy, 194(Pt 1), 1–14.PubMedPubMedCentralGoogle Scholar
  168. Thorpe, L. W., & Perez-Polo, J. R. (1987). The influence of nerve growth factor on the in vitro proliferative response of rat spleen lymphocytes. Journal of Neuroscience Research, 18(1), 134–139.PubMedGoogle Scholar
  169. Thorpe, L. W., Stach, R. W., Hashim, G. A., Marchetti, D., & Perez-Polo, J. R. (1987a). Receptors for nerve growth factor on rat spleen mononuclear cells. Journal of Neuroscience Research, 17(2), 128–134.PubMedGoogle Scholar
  170. Thorpe, L. W., Werrbach-Perez, K., & Perez-Polo, J. R. (1987b). Effects of nerve growth factor on the expression of interleukin-2 receptors on cultured human lymphocytes. Annals of the New York Academy of Sciences, 496, 310–311.PubMedGoogle Scholar
  171. Torcia, M., Bracci-Laudiero, L., Lucibello, M., Nencioni, L., Labardi, D., Rubartelli, A., Cozzolino, F., Aloe, L., & Garaci, E. (1996). Nerve growth factor is an autocrine survival factor for memory B lymphocytes. Cell, 85(3), 345–356.PubMedGoogle Scholar
  172. Tore, F., & Tuncel, N. (2009). Mast cells: Target and source of neuropeptides. Current Pharmaceutical Design, 15(29), 3433–3445.PubMedGoogle Scholar
  173. Townley, S. L., Grimbaldeston, M. A., Ferguson, I., Rush, R. A., Zhang, S. H., Zhou, X. F., Conner, J. M., Finlay-Jones, J. J., & Hart, P. H. (2002). Nerve growth factor, neuropeptides, and mast cells in ultraviolet-B-induced systemic suppression of contact hypersensitivity responses in mice. Journal of Investigative Dermatology, 118(3), 396–401.PubMedGoogle Scholar
  174. Toyoda, M., Nakamura, M., Makino, T., Hino, T., Kagoura, M., & Morohashi, M. (2002). Nerve growth factor and substance P are useful plasma markers of disease activity in atopic dermatitis. British Journal of Dermatology, 147(1), 71–79.PubMedGoogle Scholar
  175. Toyomoto, M., Ohta, M., Okumura, K., Yano, H., Matsumoto, K., Inoue, S., Hayashi, K., & Ikeda, K. (2004). Prostaglandins are powerful inducers of NGF and BDNF production in mouse astrocyte cultures. FEBS Letters, 562(1–3), 211–215.PubMedGoogle Scholar
  176. Troy, C. M., Friedman, J. E., & Friedman, W. J. (2002). Mechanisms of p75-mediated death of hippocampal neurons. Role of caspases. Journal of Biological Chemistry, 277, 34295–34302.Google Scholar
  177. Verge, V. M., Richardson, P. M., Wiesenfeld-Hallin, Z., & Hokfelt, T. (1995). Differential influence of nerve growth factor on neuropeptide expression in vivo: A novel role in peptide suppression in adult sensory neurons. Journal of Neuroscience, 15(3 Pt 1), 2081–2096.PubMedGoogle Scholar
  178. Villoslada, P., Hauser, S. L., Bartke, I., Unger, J., Heald, N., Rosenberg, D., Cheung, S. W., Mobley, W. C., Fisher, S., & Genain, C. P. (2000). Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. Journal of Experimental Medicine, 191(10), 1799–1806.PubMedPubMedCentralGoogle Scholar
  179. Welker, P., Grabbe, J., Grutzkau, A., & Henz, B. M. (1998). Effects of nerve growth factor (NGF) and other fibroblast-derived growth factors on immature human mast cells (HMC-1). Immunology, 94(3), 310–317.PubMedPubMedCentralGoogle Scholar
  180. Welker, P., Grabbe, J., Gibbs, B., Zuberbier, T., & Henz, B. M. (2000). Nerve growth factor-beta induces mast-cell marker expression during in vitro culture of human umbilical cord blood cells. Immunology, 99(3), 418–426.PubMedPubMedCentralGoogle Scholar
  181. Whittemore, S. R., Larkfors, L., Ebendal, T., Holets, V. R., Ericsson, A., & Persson, H. (1987). Increased beta-nerve growth factor messenger RNA and protein levels in neonatal rat hippocampus following specific cholinergic lesions. Journal of Neuroscience, 7(1), 244–251.PubMedGoogle Scholar
  182. Woolf, C. J., & Salter, M. W. (2000). Neuronal plasticity: Increasing the gain in pain. Science, 288(5472), 1765–1769.PubMedGoogle Scholar
  183. Xiang, Z., & Nilsson, G. (2000). IgE receptor-mediated release of nerve growth factor by mast cells. Clinical and Experimental Allergy, 30(10), 1379–1386.PubMedGoogle Scholar
  184. Yang, J., Siao, C. J., Nagappan, G., Marinic, T., Jing, D., McGrath, K., Chen, Z. Y., Mark, W., Tessarollo, L., Lee, F. S., Lu, B., & Hempstead, B. L. (2009). Neuronal release of proBDNF. Nature Neuroscience, 12, 113–115.PubMedPubMedCentralGoogle Scholar
  185. Zegarska, B., Lelinska, A., & Tyrakowski, T. (2006). Clinical and experimental aspects of cutaneous neurogenic inflammation. Pharmacological Reports, 58(1), 13–21.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Translational PharmacologyNational Research Council of Italy (CNR)RomeItaly

Personalised recommendations