Manganese Neurotoxicity

  • Daiana Silva Ávila
  • Robson Luiz Puntel
  • Vanderlei Folmer
  • João Batista Teixeira Rocha
  • Ana Paula Marreilha dos Santos
  • Michael Aschner
Reference work entry


Over the past years there has been considerable progress in our understanding of manganese (Mn)-induced neurotoxicity and its mechanisms. These studies led to changes in Mn safety assessment around the world. However, manganism continues to represent a health concern, especially considering the recent findings linking manganism to Parkinson’s disease (PD). Animal models have been invaluable in these investigations. Findings from these studies are discussed in this chapter within the context of Mn-induced neurotoxicity mechanisms and its role in the etiology of parkinsonism.


Dopamine Manganese Neurotoxicity Parkinson’s disease 



The authors are thankful to the funding grants NIH R01 ES 07331 (MA), INCT-EN, CAPES, CNPq, and FAPERGS (DSA, RLP, VF, and JBTR).


  1. Anderson, J. G., Cooney, P. T., & Erikson, K. M. (2007). Brain manganese accumulation is inversely related to gamma-amino butyric acid uptake in male and female rats. Toxicological Sciences, 95, 188–195.PubMedGoogle Scholar
  2. Aschner, M. (2000). Manganese: Brain transport and emerging research needs. Environmental Health Perspectives, 108(Suppl 3), 429–432.PubMedCentralPubMedGoogle Scholar
  3. Aschner, M., & Gannon, M. (1994). Manganese (Mn) transport across the rat blood–brain barrier: Saturable and transferrin-dependent transport mechanisms. Brain Research Bulletin, 33, 345–349.PubMedGoogle Scholar
  4. Aschner, M., & Dorman, D. C. (2006). Manganese: Pharmacokinetics and molecular mechanisms of brain uptake. Toxicological Reviews, 25, 147–154.PubMedGoogle Scholar
  5. Aschner, M., Erikson, K. M., Herrero Hernandez, E., & Tjalkens, R. (2009). Manganese and its role in Parkinson’s disease: From transport to neuropathology. Neuromolecular Medicine, 11, 252–266.PubMedGoogle Scholar
  6. ATSDR (Agency of Toxic Substances and Disease Registry). (2000). Toxicological profile for manganese. Atlanta: U.S. Department of Health and Human Services Public Health Service.Google Scholar
  7. Au, C., Benedetto, A., Anderson, J., Labrousse, A., Erikson, K., Ewbank, J. J., & Aschner, M. (2009). SMF-1, SMF-2 and SMF-3 DMT1 orthologues regulate and are regulated differentially by manganese levels in C. elegans. PloS One, 4, e7792.PubMedCentralPubMedGoogle Scholar
  8. Baldessarini, R. J., & Tarazi, F. I. (1996). Brain dopamine receptors: A primer on their current status, basic and clinical. Harvard Review of Psychiatry, 3, 301–325.PubMedGoogle Scholar
  9. Barbeau, A. (1984). Manganese and extrapyramidal disorders (a critical review and tribute to Dr. George C. Cotzias). Neurotoxicology, 5, 13–35.PubMedGoogle Scholar
  10. Bargmann, C. I. (1998). Neurobiology of the Caenorhabditis elegans genome. Science, 282, 2028–2033.PubMedGoogle Scholar
  11. Barone, M. C., Sykiotis, G. P., & Bohmann, D. (2011). Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease. Disease Models & Mechanisms, 4, 701–707.Google Scholar
  12. Benedetto, A., Au, C., & Aschner, M. (2009). Manganese-induced dopaminergic neurodegeneration: Insights into mechanisms and genetics shared with Parkinson’s disease. Chemical Reviews, 109, 4862–4884.PubMedGoogle Scholar
  13. Benedetto, A., Au, C., Avila, D. S., Milatovic, D., & Aschner, M. (2010). Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans. PLoS Genetics, 6. pii: e1001084. doi:10.1371/journal.pgen.1001084.Google Scholar
  14. Bertinet, D. B., Tinivella, M., Balzola, F. A., de Francesco, A., Davini, O., Rizzo, L., Massarenti, P., Leonardi, M. A., & Balzola, F. (2000). Brain manganese deposition and blood levels in patients undergoing home parenteral nutrition. JPEN. Journal of Parenteral and Enteral Nutrition, 24, 223–227.PubMedGoogle Scholar
  15. Bird, E. D., Anton, A. H., & Bullock, B. (1984). The effect of manganese inhalation on basal ganglia dopamine concentrations in rhesus monkey. Neurotoxicology, 5, 59–65.PubMedGoogle Scholar
  16. Bonilla-Ramirez, L., Jimenez-Del-Rio, M., & Velez-Pardo, C. (2011). Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: A model to study Parkinsonism. Biometals, 24, 1045–1057.PubMedGoogle Scholar
  17. Bowman, A. B., Kwakye, G. F., Herrero Hernandez, E., & Aschner, M. (2011). Role of manganese in neurodegenerative diseases. Journal of Trace Elements in Medicine and Biology, 25(4), 191–203.PubMedCentralPubMedGoogle Scholar
  18. Butterworth, R. F., Spahr, L., Fontaine, S., & Layrargues, G. P. (1995). Manganese toxicity, dopaminergic dysfunction and hepatic encephalopathy. Metabolic Brain Disease, 10, 259–267.PubMedGoogle Scholar
  19. Cai, T., Yao, T., Zheng, G., Chen, Y., Du, K., Cao, Y., Shen, X., Chen, J., & Luo, W. (2010). Manganese induces the overexpression of alpha-synuclein in PC12 cells via ERK activation. Brain Research, 1359, 201–207.PubMedGoogle Scholar
  20. Calne, D. B., Chu, N. S., Huang, C. C., Lu, C. S., & Olanow, W. (1994). Manganism and idiopathic parkinsonism: Similarities and differences. Neurology, 44, 1583–1586.PubMedGoogle Scholar
  21. Chalela, J. A., Bonillha, L., Neyens, R., & Hays, A. (2011). Manganese encephalopathy: An under-recognized condition in the intensive care unit. Neurocritical Care, 14, 456–458.PubMedGoogle Scholar
  22. Chance, B. (1965). The energy-linked reaction of calcium with mitochondria. Journal of Biological Chemistry, 240, 2729–2748.PubMedGoogle Scholar
  23. Chandra, S. V., Srivastava, R. S., & Shukla, G. S. (1979). Regional distribution of metals and biogenic amines in the brain of monkeys exposed to manganese. Toxicology Letters, 4, 189–192.Google Scholar
  24. Chen, M. K., Lee, J. S., McGlothan, J. L., Furukawa, E., Adams, R. J., Alexander, M., Wong, D. F., & Guilarte, T. R. (2006). Acute manganese administration alters dopamine transporter levels in the non-human primate striatum. Neurotoxicology, 27, 229–236.PubMedGoogle Scholar
  25. Choi, J., Levey, A. I., Weintraub, S. T., Rees, H. D., Gearing, M., Chin, L. S., & Li, L. (2004). Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. Journal of Biological Chemistry, 279, 13256–13264.PubMedGoogle Scholar
  26. Chua, A. C., & Morgan, E. H. (1997). Manganese metabolism is impaired in the Belgrade laboratory rat. Journal of Comparative Physiology. B, 167, 361–369.Google Scholar
  27. Cooper, J., Bloom, F., & Roth, R. (1996). Dopamine. New York: Oxford University Press.Google Scholar
  28. Cotzias, G. C., Horiuchi, K., Fuenzalida, S., & Mena, I. (1968). Chronic manganese poisoning. Clearance of tissue manganese concentrations with persistance of the neurological picture. Neurology, 18, 376–382.PubMedGoogle Scholar
  29. Couper, J. (1837). On the effects of black oxide of manganese when inhaled into the lungs. British Annals of Medicine and Pharmacology, 1, 41–42.Google Scholar
  30. Criswell, S. R., Perlmutter, J. S., Videen, T. O., Moerlein, S. M., Flores, H. P., Birke, A. M., & Racette, B. A. (2011). Reduced uptake of [(1)F] FDOPA PET in asymptomatic welders with occupational manganese exposure. Neurology, 76, 1296–1301.PubMedCentralPubMedGoogle Scholar
  31. Crossgrove, J. S., Allen, D. D., Bukaveckas, B. L., Rhineheimer, S. S., & Yokel, R. A. (2003). Manganese distribution across the blood–brain barrier. I. Evidence for carrier-mediated influx of managanese citrate as well as manganese and manganese transferrin. Neurotoxicology, 24, 3–13.PubMedGoogle Scholar
  32. Davidsson, L., Cederblad, A., Lonnerdal, B., & Sandstrom, B. (1989). Manganese retention in man: A method for estimating manganese absorption in man. American Journal of Clinical Nutrition, 49, 170–179.PubMedGoogle Scholar
  33. Dharmasaroja, P. (2010). Signal intensity loss on T2-weighted gradient-recalled echo magnetic resonance images in the basal ganglia in a patient with chronic hepatic encephalopathy. The Neurologist, 16, 265–268.PubMedGoogle Scholar
  34. Dobson, A. W., Erikson, K. M., & Aschner, M. (2004). Manganese neurotoxicity. Annals of the New York Academy of Sciences, 1012, 115–128.PubMedGoogle Scholar
  35. Donaldson, J., LaBella, F. S., & Gesser, D. (1981). Enhanced autoxidation of dopamine as a possible basis of manganese neurotoxicity. Neurotoxicology, 2, 53–64.PubMedGoogle Scholar
  36. Donaldson, J., McGregor, D., & LaBella, F. (1982). Manganese neurotoxicity: A model for free radical mediated neurodegeneration? Canadian Journal of Physiology and Pharmacology, 60, 1398–1405.PubMedGoogle Scholar
  37. Dorman, D. C., Struve, M. F., James, R. A., McManus, B. E., Marshall, M. W., & Wong, B. A. (2001). Influence of dietary manganese on the pharmacokinetics of inhaled manganese sulfate in male CD rats. Toxicological Sciences, 60, 242–251.PubMedGoogle Scholar
  38. Dorman, D. C., Struve, M. F., Marshall, M. W., Parkinson, C. U., James, R. A., & Wong, B. A. (2006). Tissue manganese concentrations in young male rhesus monkeys following subchronic manganese sulfate inhalation. Toxicological Sciences, 92, 201–210.PubMedGoogle Scholar
  39. Dorman, D. C., Struve, M. F., Norris, A., & Higgins, A. J. (2008). Metabolomic analyses of body fluids after subchronic manganese inhalation in rhesus monkeys. Toxicological Sciences, 106, 46–54.PubMedGoogle Scholar
  40. Erikson, K. M., & Aschner, M. (2003). Manganese neurotoxicity and glutamate-GABA interaction. Neurochemistry International, 43, 475–480.PubMedGoogle Scholar
  41. Erikson, K. M., Dorman, D. C., Lash, L. H., & Aschner, M. (2007). Manganese inhalation by rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Toxicological Sciences, 97, 459–466.PubMedGoogle Scholar
  42. Eriksson, H., Magiste, K., Plantin, L. O., Fonnum, F., Hedstrom, K. G., Theodorsson-Norheim, E., Kristensson, K., Stalberg, E., & Heilbronn, E. (1987). Effects of manganese oxide on monkeys as revealed by a combined neurochemical, histological and neurophysiological evaluation. Archives of Toxicology, 61, 46–52.PubMedGoogle Scholar
  43. Eriksson, H., Tedroff, J., Thuomas, K. A., Aquilonius, S. M., Hartvig, P., Fasth, K. J., Bjurling, P., Langstrom, B., Hedstrom, K. G., & Heilbronn, E. (1992). Manganese induced brain lesions in Macaca fascicularis as revealed by positron emission tomography and magnetic resonance imaging. Archives of Toxicology, 66, 403–407.PubMedGoogle Scholar
  44. Feany, M. B., & Bender, W. W. (2000). A Drosophila model of Parkinson’s disease. Nature, 404, 394–398.PubMedGoogle Scholar
  45. Felicio, A. C., Shih, M. C., Godeiro-Junior, C., Andrade, L. A., Bressan, R. A., & Ferraz, H. B. (2009). Molecular imaging studies in Parkinson disease: Reducing diagnostic uncertainty. The Neurologist, 15, 6–16.PubMedGoogle Scholar
  46. Finkelstein, M. M., & Jerrett, M. (2007). A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environmental Research, 104, 420–432.PubMedGoogle Scholar
  47. Finley, J. W., & Davis, C. D. (1999). Manganese deficiency and toxicity: Are high or low dietary amounts of manganese cause for concern? Biofactors, 10, 15–24.PubMedGoogle Scholar
  48. Fitsanakis, V. A., Zhang, N., Anderson, J. G., Erikson, K. M., Avison, M. J., Gore, J. C., & Aschner, M. (2008). Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicological Sciences, 103, 116–124.PubMedGoogle Scholar
  49. Fleming, M. D., Romano, M. A., Su, M. A., Garrick, L. M., Garrick, M. D., & Andrews, N. C. (1998). Nramp2 is mutated in the anemic Belgrade (b) rat: Evidence of a role for Nramp2 in endosomal iron transport. Proceedings of the National Academy of Sciences of the United States of America, 95, 1148–1153.PubMedCentralPubMedGoogle Scholar
  50. Freeland-Graves, J. H., & Lin, P. H. (1991). Plasma uptake of manganese as affected by oral loads of manganese, calcium, milk, phosphorus, copper, and zinc. Journal of the American College of Nutrition, 10, 38–43.PubMedGoogle Scholar
  51. Garcia, S. J., Gellein, K., Syversen, T., & Aschner, M. (2007). Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicological Sciences, 95, 205–214.PubMedGoogle Scholar
  52. Garcia-Aranda, J. A., Wapnir, R. A., & Lifshitz, F. (1983). In vivo intestinal absorption of manganese in the rat. Journal of Nutrition, 113, 2601–2607.PubMedGoogle Scholar
  53. Gavin, C. E., Gunter, K. K., & Gunter, T. E. (1990). Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochemical Journal, 266, 329–334.PubMedCentralPubMedGoogle Scholar
  54. Gitler, A. D., Chesi, A., Geddie, M. L., Strathearn, K. E., Hamamichi, S., Hill, K. J., Caldwell, K. A., Caldwell, G. A., Cooper, A. A., Rochet, J. C., & Lindquist, S. (2009). Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nature Genetics, 41, 308–315.PubMedCentralPubMedGoogle Scholar
  55. Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., Kortsha, G. X., Brown, G. G., & Richardson, R. J. (1999). Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology, 20, 239–247.PubMedGoogle Scholar
  56. Graumann, R., Paris, I., Martinez-Alvarado, P., Rumanque, P., Perez-Pastene, C., Cardenas, S. P., Marin, P., Diaz-Grez, F., Caviedes, R., Caviedes, P., & Segura-Aguilar, J. (2002). Oxidation of dopamine to aminochrome as a mechanism for neurodegeneration of dopaminergic systems in Parkinson’s disease. Possible neuroprotective role of DT-diaphorase. Polish Journal of Pharmacology, 54, 573–579.PubMedGoogle Scholar
  57. Green, D. R., & Reed, J. C. (1998). Mitochondria and apoptosis. Science, 281, 1309–1312.PubMedGoogle Scholar
  58. Guilarte, T. R. (2010). Manganese and Parkinson’s disease: A critical review and new findings. Environmental Health Perspectives, 118, 1071–1080.PubMedCentralPubMedGoogle Scholar
  59. Gunter, T. E., & Pfeiffer, D. R. (1990). Mechanisms by which mitochondria transport calcium. American Journal of Physiology, 258, C755–C786.PubMedGoogle Scholar
  60. Hardy, G. (2009). Manganese in parenteral nutrition: Who, when, and why should we supplement? Gastroenterology, 137, S29–S35.PubMedGoogle Scholar
  61. Hazell, A. S., & Butterworth, R. F. (1999). Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proceedings of the Society for Experimental Biology and Medicine, 222, 99–112.PubMedGoogle Scholar
  62. Hazelwood, L. A., Free, R. B., Cabrera, D. M., Skinbjerg, M., & Sibley, D. R. (2008). Reciprocal modulation of function between the D1 and D2 dopamine receptors and the Na+, K+−ATPase. Journal of Biological Chemistry, 283, 36441–36453.PubMedCentralPubMedGoogle Scholar
  63. He, L., Girijashanker, K., Dalton, T. P., Reed, J., Li, H., Soleimani, M., & Nebert, D. W. (2006). ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: Characterization of transporter properties. Molecular Pharmacology, 70, 171–180.PubMedGoogle Scholar
  64. Huang, C. C., Chu, N. S., Lu, C. S., Wang, J. D., Tsai, J. L., Tzeng, J. L., Wolters, E. C., & Calne, D. B. (1989). Chronic manganese intoxication. Archives of Neurology, 46, 1104–1106.PubMedGoogle Scholar
  65. Huang, C. C., Weng, Y. H., Lu, C. S., Chu, N. S., & Yen, T. C. (2003). Dopamine transporter binding in chronic manganese intoxication. Journal of Neurology, 250, 1335–1339.PubMedGoogle Scholar
  66. Huang, E., Ong, W. Y., & Connor, J. R. (2004). Distribution of divalent metal transporter-1 in the monkey basal ganglia. Neuroscience, 128, 487–496.PubMedGoogle Scholar
  67. Israeli, R., Sculsky, M., & Tiberin, P. (1983). Acute intoxication due to exposure to maneb and zineb. A case with behavioral and central nervous system changes. Scandinavian Journal of Work, Environment & Health, 9, 47–51.Google Scholar
  68. Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery & Psychiatry, 79, 368–376.Google Scholar
  69. Kannurpatti, S. S., Joshi, P. G., & Joshi, N. B. (2000). Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel. Neurochemical Research, 25, 1527–1536.PubMedGoogle Scholar
  70. Keen, C. L., Ensunsa, J. L., Watson, M. H., Baly, D. L., Donovan, S. M., Monaco, M. H., & Clegg, M. S. (1999). Nutritional aspects of manganese from experimental studies. Neurotoxicology, 20, 213–223.PubMedGoogle Scholar
  71. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.PubMedGoogle Scholar
  72. Kim, Y., Kim, J. W., Ito, K., Lim, H. S., Cheong, H. K., Kim, J. Y., Shin, Y. C., Kim, K. S., & Moon, Y. (1999). Idiopathic parkinsonism with superimposed manganese exposure: Utility of positron emission tomography. Neurotoxicology, 20, 249–252.PubMedGoogle Scholar
  73. Korsmeyer, S. J., Wei, M. C., Saito, M., Weiler, S., Oh, K. J., & Schlesinger, P. H. (2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death and Differentiation, 7, 1166–1173.PubMedGoogle Scholar
  74. Kulisevsky, J., Pujol, J., Junque, C., Deus, J., Balanzo, J., & Capdevila, A. (1993). MRI pallidal hyperintensity and brain atrophy in cirrhotic patients: Two different MRI patterns of clinical deterioration? Neurology, 43, 2570–2573.PubMedGoogle Scholar
  75. Lees, A. J., Hardy, J., & Revesz, T. (2009). Parkinson’s disease. Lancet, 373, 2055–2066.PubMedGoogle Scholar
  76. Link, C. D. (2006). C. elegans models of age-associated neurodegenerative diseases: Lessons from transgenic worm models of Alzheimer’s disease. Experimental Gerontology, 41, 1007–1013.PubMedGoogle Scholar
  77. Ljung, K., & Vahter, M. (2007). Time to re-evaluate the guideline value for manganese in drinking water? Environmental Health Perspectives, 115, 1533–1538.PubMedCentralPubMedGoogle Scholar
  78. Lloyd, R. V. (1995). Mechanism of the manganese-catalyzed autoxidation of dopamine. Chemical Research in Toxicology, 8, 111–116.PubMedGoogle Scholar
  79. Lockman, P. R., Roder, K. E., & Allen, D. D. (2001). Inhibition of the rat blood–brain barrier choline transporter by manganese chloride. Journal of Neurochemistry, 79, 588–594.PubMedGoogle Scholar
  80. Lucaciu, C. M., Dragu, C., Copaescu, L., & Morariu, V. V. (1997). Manganese transport through human erythrocyte membranes. An EPR study. Biochimica et Biophysica Acta, 1328, 90–98.PubMedGoogle Scholar
  81. Lucchini, R. G., Albini, E., Benedetti, L., Borghesi, S., Coccaglio, R., Malara, E. C., Parrinello, G., Garattini, S., Resola, S., & Alessio, L. (2007). High prevalence of Parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. American Journal of Industrial Medicine, 50, 788–800.PubMedGoogle Scholar
  82. Lynam, D. R., Roos, J. W., Pfeifer, G. D., Fort, B. F., & Pullin, T. G. (1999). Environmental effects and exposures to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline. Neurotoxicology, 20, 145–150.PubMedGoogle Scholar
  83. Malecki, E. A. (2001). Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Research Bulletin, 55, 225–228.PubMedGoogle Scholar
  84. McDougall, S. A., Reichel, C. M., Farley, C. M., Flesher, M. M., Der-Ghazarian, T., Cortez, A. M., Wacan, J. J., Martinez, C. E., Varela, F. A., Butt, A. E., & Crawford, C. A. (2008). Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes. Neuroscience, 154, 848–860.PubMedCentralPubMedGoogle Scholar
  85. Meeker, J. D., Susi, P., & Flynn, M. R. (2007). Manganese and welding fume exposure and control in construction. Journal of Occupational and Environmental Hygiene, 4, 943–951.PubMedGoogle Scholar
  86. Mena, I., Marin, O., Fuenzalida, S., & Cotzias, G. C. (1967). Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology, 17, 128–136.PubMedGoogle Scholar
  87. Mendieta Zeron, H., Rodriguez, M. R., Montes, S., & Castaneda, C. R. (2011). Blood manganese levels in patients with hepatic encephalopathy. Journal of Trace Elements in Medicine and Biology, 25, 225.Google Scholar
  88. Mergler, D., Huel, G., Bowler, R., Iregren, A., Belanger, S., Baldwin, M., Tardif, R., Smargiassi, A., & Martin, L. (1994). Nervous system dysfunction among workers with long-term exposure to manganese. Environmental Research, 64, 151–180.PubMedGoogle Scholar
  89. Milatovic, D., Yin, Z., Gupta, R. C., Sidoryk, M., Albrecht, J., Aschner, J. L., & Aschner, M. (2007). Manganese induces oxidative impairment in cultured rat astrocytes. Toxicological Sciences, 98, 198–205.PubMedGoogle Scholar
  90. Morello, M., Canini, A., Mattioli, P., Sorge, R. P., Alimonti, A., Bocca, B., Forte, G., Martorana, A., Bernardi, G., & Sancesario, G. (2008). Sub-cellular localization of manganese in the basal ganglia of normal and manganese-treated rats An electron spectroscopy imaging and electron energy-loss spectroscopy study. Neurotoxicology, 29, 60–72.PubMedGoogle Scholar
  91. Murphy, V. A., Wadhwani, K. C., Smith, Q. R., & Rapoport, S. I. (1991). Saturable transport of manganese(II) across the rat blood–brain barrier. Journal of Neurochemistry, 57, 948–954.PubMedGoogle Scholar
  92. Neff, N. H., Barrett, R. E., & Costa, E. (1969). Selective depletion of caudate nucleus dopamine and serotonin during chronic manganese dioxide administration to squirrel monkeys. Experientia, 25, 1140–1141.PubMedGoogle Scholar
  93. Negga, R., Rudd, D. A., Davis, N. S., Justice, A. N., Hatfield, H. E., Valente, A. L., Fields, A. S., & Fitsanakis, V. A. (2011a). Exposure to Mn/Zn ethylene-bis-dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans. Neurotoxicology, 32, 331–341.PubMedCentralPubMedGoogle Scholar
  94. Negga, R., Stuart, J. A., Machen, M. L., Salva, J., Lizek, A. J., Richardson, S. J., Osborne, A. S., Mirallas, O., McVey, K. A., & Fitsanakis, V. A. (2011b). Exposure to Glyphosate- and/or Mn/Zn-Ethylene-bis-Dithiocarbamate-containing pesticides leads to degeneration of gamma-aminobutyric acid and dopamine neurons in Caenorhabditis elegans. Neurotoxicity Research, 21, 281.PubMedCentralPubMedGoogle Scholar
  95. Newland, M. C., & Weiss, B. (1992). Persistent effects of manganese on effortful responding and their relationship to manganese accumulation in the primate globus pallidus. Toxicology and Applied Pharmacology, 113, 87–97.PubMedGoogle Scholar
  96. Newland, M. C., Cox, C., Hamada, R., Oberdorster, G., & Weiss, B. (1987). The clearance of manganese chloride in the primate. Fundamental and Applied Toxicology, 9, 314–328.PubMedGoogle Scholar
  97. Nong, A., Teeguarden, J. G., Clewell, H. J., 3rd, Dorman, D. C., & Andersen, M. E. (2008). Pharmacokinetic modeling of manganese in the rat IV: Assessing factors that contribute to brain accumulation during inhalation exposure. Journal of Toxicology and Environmental Health. Part A, 71, 413–426.PubMedGoogle Scholar
  98. Olanow, C. W. (2004). Manganese-induced parkinsonism and Parkinson’s disease. Annals of the New York Academy of Sciences, 1012, 209–223.PubMedGoogle Scholar
  99. Ono, J., Harada, K., Kodaka, R., Sakurai, K., Tajiri, H., Takagi, Y., Nagai, T., Harada, T., Nihei, A., Okada, A., et al. (1995). Manganese deposition in the brain during long-term total parenteral nutrition. Journal of Parenteral and Enteral Nutrition (JPEN), 19, 310–312.Google Scholar
  100. Pal, P. K., Samii, A., & Calne, D. B. (1999). Manganese neurotoxicity: A review of clinical features, imaging and pathology. Neurotoxicology, 20, 227–238.PubMedGoogle Scholar
  101. Peneder, T. M., Scholze, P., Berger, M. L., Reither, H., Heinze, G., Bertl, J., Bauer, J., Richfield, E. K., Hornykiewicz, O., & Pifl, C. (2011). Chronic exposure to manganese decreases striatal dopamine turnover in human alpha-synuclein transgenic mice. Neuroscience, 180, 280–292.PubMedGoogle Scholar
  102. Pentschew, A., Ebner, F. F., & Kovatch, R. M. (1963). Experimental manganese encephalopathy in monkeys. A preliminary report. Journal of Neuropathology and Experimental Neurology, 22, 488–499.PubMedGoogle Scholar
  103. Perl, D. P., & Olanow, C. W. (2007). The neuropathology of manganese-induced Parkinsonism. Journal of Neuropathology and Experimental Neurology, 66, 675–682.PubMedGoogle Scholar
  104. Petit, P. X., Susin, S. A., Zamzami, N., Mignotte, B., & Kroemer, G. (1996). Mitochondria and programmed cell death: Back to the future. FEBS Letters, 396, 7–13.PubMedGoogle Scholar
  105. Prabhakaran, K., Chapman, G. D., & Gunasekar, P. G. (2011). Alpha-Synuclein overexpression enhances manganese-induced neurotoxicity through the NF-kappaB-mediated pathway. Toxicology Mechanisms and Methods, 21, 435–443.PubMedGoogle Scholar
  106. Racette, B. A., McGee-Minnich, L., Moerlein, S. M., Mink, J. W., Videen, T. O., & Perlmutter, J. S. (2001). Welding-related parkinsonism: Clinical features, treatment, and pathophysiology. Neurology, 56, 8–13.PubMedGoogle Scholar
  107. Racette, B. A., Antenor, J. A., McGee-Minnich, L., Moerlein, S. M., Videen, T. O., Kotagal, V., & Perlmutter, J. S. (2005). [18F]FDOPA PET and clinical features in parkinsonism due to manganism. Movement Disorders, 20, 492–496.PubMedGoogle Scholar
  108. Reaney, S. H., & Smith, D. R. (2005). Manganese oxidation state mediates toxicity in PC12 cells. Toxicology and Applied Pharmacology, 205, 271–281.PubMedGoogle Scholar
  109. Reichel, C. M., Wacan, J. J., Farley, C. M., Stanley, B. J., Crawford, C. A., & McDougall, S. A. (2006). Postnatal manganese exposure attenuates cocaine-induced locomotor activity and reduces dopamine transporters in adult male rats. Neurotoxicology and Teratology, 28, 323–332.PubMedGoogle Scholar
  110. Riccio, A., Mattei, C., Kelsell, R. E., Medhurst, A. D., Calver, A. R., Randall, A. D., Davis, J. B., Benham, C. D., & Pangalos, M. N. (2002). Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. Journal of Biological Chemistry, 277, 12302–12309.PubMedGoogle Scholar
  111. Rivera-Mancia, S., Rios, C., & Montes, S. (2011). Manganese accumulation in the CNS and associated pathologies. Biometals, 24, 811–825.PubMedGoogle Scholar
  112. Roth, J. A. (2006). Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biological Research, 39, 45–57.PubMedGoogle Scholar
  113. Roth, J. A. (2009). Are there common biochemical and molecular mechanisms controlling manganism and parkisonism. Neuromolecular Medicine, 11, 281–296.PubMedGoogle Scholar
  114. Salazar, J., Mena, N., Hunot, S., Prigent, A., Alvarez-Fischer, D., Arredondo, M., Duyckaerts, C., Sazdovitch, V., Zhao, L., Garrick, L. M., Nunez, M. T., Garrick, M. D., Raisman-Vozari, R., & Hirsch, E. C. (2008). Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 105, 18578–18583.PubMedCentralPubMedGoogle Scholar
  115. Santamaria, A. B., Cushing, C. A., Antonini, J. M., Finley, B. L., & Mowat, F. S. (2007). State-of-the-science review: Does manganese exposure during welding pose a neurological risk? Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 10, 417–465.PubMedGoogle Scholar
  116. Schmidt, E., Seifert, M., & Baumeister, R. (2007). Caenorhabditis elegans as a model system for Parkinson’s disease. Neurodegenerative Diseases, 4, 199–217.PubMedGoogle Scholar
  117. Schneider, J. S., Decamp, E., Koser, A. J., Fritz, S., Gonczi, H., Syversen, T., & Guilarte, T. R. (2006). Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Research, 1118, 222–231.PubMedCentralPubMedGoogle Scholar
  118. Scholte, H. R. (1988). The biochemical basis of mitochondrial diseases. Journal of Bioenergetics and Biomembranes, 20, 161–191.PubMedGoogle Scholar
  119. Seth, P. K., & Chandra, S. V. (1984). Neurotransmitters and neurotransmitter receptors in developing and adult rats during manganese poisoning. Neurotoxicology, 5, 67–76.PubMedGoogle Scholar
  120. Settivari, R., Levora, J., & Nass, R. (2009). The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in caenorhabditis elegans models of manganism and parkinson disease. Journal of Biological Chemistry, 284, 35758–35768.PubMedCentralPubMedGoogle Scholar
  121. Sikk, K., Haldre, S., Aquilonius, S. M., & Taba, P. (2011). Manganese-induced parkinsonism due to ephedrone abuse. Parkinsons Disease, 2011, 865319.Google Scholar
  122. Smith, R. A., Latchney, L. R., & Senior, A. E. (1985). Tight divalent metal binding to Escherichia coli F1-adenosinetriphosphatase. Complete substitution of intrinsic magnesium by manganese or cobalt and studies of metal binding sites. Biochemistry, 24, 4490–4494.PubMedGoogle Scholar
  123. Spahr, L., Butterworth, R. F., Fontaine, S., Bui, L., Therrien, G., Milette, P. C., Lebrun, L. H., Zayed, J., Leblanc, A., & Pomier-Layrargues, G. (1996). Increased blood manganese in cirrhotic patients: relationship to pallidal magnetic resonance signal hyperintensity and neurological symptoms. Hepatology, 24, 1116–1120.PubMedGoogle Scholar
  124. Sriram, K., Lin, G. X., Jefferson, A. M., Roberts, J. R., Wirth, O., Hayashi, Y., Krajnak, K. M., Soukup, J. M., Ghio, A. J., Reynolds, S. H., Castranova, V., Munson, A. E., & Antonini, J. M. (2010). Mitochondrial dysfunction and loss of Parkinson’s disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes. The FASEB Journal, 24, 4989–5002.Google Scholar
  125. Stastny, D., Vogel, R. S., & Picciano, M. F. (1984). Manganese intake and serum manganese concentration of human milk-fed and formula-fed infants. American Journal of Clinical Nutrition, 39, 872–878.PubMedGoogle Scholar
  126. Stokes, A. H., Hastings, T. G., & Vrana, K. E. (1999). Cytotoxic and genotoxic potential of dopamine. Journal of Neuroscience Research, 55, 659–665.PubMedGoogle Scholar
  127. Takeda, A., Sawashita, J., & Okada, S. (1995). Biological half-lives of zinc and manganese in rat brain. Brain Research, 695, 53–58.PubMedGoogle Scholar
  128. Tolosa, E., Wenning, G., & Poewe, W. (2006). The diagnosis of Parkinson’s disease. Lancet Neurology, 5, 75–86.PubMedGoogle Scholar
  129. Tong, M., Dong, M., & de la Monte, S. M. (2009). Brain insulin-like growth factor and neurotrophin resistance in Parkinson’s disease and dementia with Lewy bodies: Potential role of manganese neurotoxicity. Journal of Alzheimer’s Disease, 16, 585–599.PubMedCentralPubMedGoogle Scholar
  130. Ulmer, T. S., & Bax, A. (2005). Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. Journal of Biological Chemistry, 280, 43179–43187.PubMedGoogle Scholar
  131. Van Swinderen, B., & Andretic, R. (2011). Dopamine in Drosophila: Setting arousal thresholds in a miniature brain. Proceedings: Biological Sciences, 278, 906–913.PubMedCentralGoogle Scholar
  132. Verity, M. A. (1999). Manganese neurotoxicity: A mechanistic hypothesis. Neurotoxicology, 20, 489–497.PubMedGoogle Scholar
  133. von Campenhausen, S., Bornschein, B., Wick, R., Botzel, K., Sampaio, C., Poewe, W., Oertel, W., Siebert, U., Berger, K., & Dodel, R. (2005). Prevalence and incidence of Parkinson’s disease in Europe. European Neuropsychopharmacology, 15, 473–490.Google Scholar
  134. Wang, D., & Xing, X. (2008). Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. Journal of Environmental Sciences (China), 20, 1132–1137.Google Scholar
  135. Wasserman, G. A., Liu, X., Parvez, F., Ahsan, H., Levy, D., Factor-Litvak, P., Kline, J., van Geen, A., Slavkovich, V., LoIacono, N. J., Cheng, Z., Zheng, Y., & Graziano, J. H. (2006). Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environmental Health Perspectives, 114, 124–129.PubMedCentralPubMedGoogle Scholar
  136. Weissenborn, K., Ehrenheim, C., Hori, A., Kubicka, S., & Manns, M. P. (1995). Pallidal lesions in patients with liver cirrhosis: Clinical and MRI evaluation. Metabolic Brain Disease, 10, 219–231.PubMedGoogle Scholar
  137. Yin, Z., Aschner, J. L., dos Santos, A. P., & Aschner, M. (2008). Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Research, 1203, 1–11.PubMedCentralPubMedGoogle Scholar
  138. Yin, Z., Jiang, H., Lee, E. S., Ni, M., Erikson, K. M., Milatovic, D., Bowman, A. B., & Aschner, M. (2010). Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation. Journal of Neurochemistry, 112, 1190–1198.PubMedCentralPubMedGoogle Scholar
  139. Zayed, J., Thibault, C., Gareau, L., & Kennedy, G. (1999). Airborne manganese particulates and methylcyclopentadienyl manganese tricarbonyl (MMT) at selected outdoor sites in Montreal. Neurotoxicology, 20, 151–157.PubMedGoogle Scholar
  140. Zhang, S., Fu, J., & Zhou, Z. (2004). In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicology In Vitro, 18, 71–77.PubMedGoogle Scholar
  141. Zlotkin, S. H., Atkinson, S., & Lockitch, G. (1995). Trace elements in nutrition for premature infants. Clinics in Perinatology, 22, 223–240.PubMedGoogle Scholar
  142. Zoratti, M., & Szabo, I. (1995). The mitochondrial permeability transition. Biochimica et Biophysica Acta, 1241, 139–176.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Daiana Silva Ávila
    • 1
  • Robson Luiz Puntel
    • 1
  • Vanderlei Folmer
    • 1
  • João Batista Teixeira Rocha
    • 2
  • Ana Paula Marreilha dos Santos
    • 3
  • Michael Aschner
    • 4
    • 5
  1. 1.Universidade Federal do Pampa, UruguaianaRSBrazil
  2. 2.Universidade Federal de Santa MariaRSBrazil
  3. 3.Department of Toxicology and Food Sciences, Faculty of PharmacyUniversity of LisbonLisbonPortugal
  4. 4.Department of PediatricsVanderbilt UniversityNashvilleUSA
  5. 5.Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations