Skip to main content

Excitotoxicity in the Pathogenesis of Autism

  • Reference work entry
  • First Online:
  • 2775 Accesses

Abstract

Autism is a neurodevelopmental disorder characterized by stereotyped interests and behaviors and abnormalities in verbal and nonverbal communication. Autism is reported as a multifactorial disorder resulting from interactions between genetic, environmental, and immunological factors. Excitotoxicity and oxidative stress are potential mechanisms, which are likely to serve as a converging point to these risk factors. Numerous studies suggest that excitotoxicity is a likely cause of neuronal dysfunction in autistic patients. Glutamate is the main excitatory neurotransmitter generated in the CNS, and overactivation of glutamate receptors triggers excitotoxicity. Hyperactivation of glutamatergic receptors, NMDA and AMPA, leads to activation of enzymes, which damage cellular structure, membrane permeability, and electrochemical gradients. The role of excitotoxicity in autistic subjects is summarized in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Babu, G. N., Bawari, M., & Ali, M. M. (1994). Lipid peroxidation potential and antioxidant status of circumventricular organs of rat brain following neonatal monosodium glutamate. Neurotoxicology, 15, 773–777.

    CAS  PubMed  Google Scholar 

  • Bachevalier, J. (1994). Medical temporal lobe structures and autism. A review of clinical and experimental findings. Neuropsychologia, 32(6), 627–648.

    Article  CAS  PubMed  Google Scholar 

  • Baxter, P., Griffiths, P., Kelly, T., & Gardner-Medwin, D. (1996). Pyridoxine dependent seizuer; demographic clinical, MRI and psychometric feature, and affect of dose on intelligent quotient. Dev. Med. Chil Neurol. 38(11), 998–1006.

    Article  CAS  Google Scholar 

  • Baron-Cohen, S., Scott, F. J., Allison, C., Williams, J., Bolton, P., Matthews, F. E., & Brayne, C. (2009). Prevalence of autism-spectrum conditions: UK school-based population study. The British Journal of Psychiatry, 194, 500–509.

    Article  PubMed  Google Scholar 

  • Blaylock, R. L. (2003). The central role of excitotoxicity in autism spectrum disorders. The Journal of the American Nutraceutical Association, 6, 7–19.

    Google Scholar 

  • Chez, M. G., Burton, Q., Dowling, T., Chang, M., Khanna, P., & Kramer, C. (2007). Memantine as adjunctive therapy in children diagnosed with autistic spectrum disorders: An observation of initial clinical response and maintenance tolerability. Journal of Child Neurology, 22, 574–579.

    Article  PubMed  Google Scholar 

  • Cohly, H. H., & Panja, A. (2005). Immunological findings in autism. International Review of Neurobiology, 71, 317–341.

    Article  CAS  PubMed  Google Scholar 

  • Ekonomou, A., & Angelatou, F. (1999). Upregulation of NMDA receptors in hippocampus and cortex in the pentylenetetrazol-induced “kindling” model of epilepsy. Neurochemical Research, 24, 1515–1522.

    Article  CAS  PubMed  Google Scholar 

  • Eliasson, M. J., Huang, Z., & Ferrante, R. J. (1999). Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. The Journal of Neuroscience, 19, 5910–5918.

    CAS  PubMed  Google Scholar 

  • Espey, M. G., Kustova, Y., Sei, Y., & Basile, A. S. (1998). Extracellular glutamate levels are chronically elevated in the brains of LPBM5-infected mice: A mechanism of retrovirus-induced encephalopathy. Journal of Neurochemistry, 71, 2079–2087.

    Article  CAS  PubMed  Google Scholar 

  • Farooqui, A. A., & Horrocks, L. A. (1994). Excitotoxicity and neurological disorders: Involvement of membrane phospholipids. International Review of Neurobiology, 36, 267–323.

    Article  CAS  PubMed  Google Scholar 

  • Fontana, A., Constam, D., Frei, K., et al. (1996). Cytokines and defense against CNS infection. In R. M. Ransohoff & E. N. Beneviste (Eds.), Cytokines and the CNS. Boca Raton: CRC Press. ISBN ISBN-10: 0849324521.

    Google Scholar 

  • Fosslier, E. (2001). Mitochondrial medicine-molecular pathology of defective oxidative phosphorylation. Annals of Clinical and Laboratory Science, 31, 25–67.

    Google Scholar 

  • Gillberg, C., & Coleman, M. (2000). The biology of autistic syndromes (3rd ed.). London: Mac Keith (distributed by Cambridge University Press), New York: Mac Keith Press.

    Google Scholar 

  • Gospe, S. M., & Hecht, S. T. (1998). Longitudinal MRI findings in pyridoxine dependent seizures. Neurology, 51, 74–78.

    Article  PubMed  Google Scholar 

  • Henneberry, R. C. (1989). The role of neuronal energy in neurotoxicity of excitatory amino acids. Neurobiology of Aging, 10, 611–613.

    Article  CAS  PubMed  Google Scholar 

  • Hu, H., Shao, L. R., Chavoshy, S., Gu, N., Trieb, M., Behrens, R., Laake, P., Pongs, O., Knaus, H. G., Ottersen, O. P. et al. (2001). Glutamatergic hippocampul terminals and their role in spike repolarization and regulation of transmitter nllase. J. Neurosci., 15:21(24), 9585–9597.

    Google Scholar 

  • Johnston, M. V. (1995). Neurotransmitters and vulnerability of the developing brain. Brain & Development, 17, 301–306.

    Article  CAS  Google Scholar 

  • Lan, J. Y., Skeberdis, V. A., Jover, T., Grooms, S. Y., Lin, Y., Araneda, R. C., et al. (2001). Protein kinase C modulates NMDA receptor trafficking and gating. Nature Neuroscience, 4, 382–390.

    Article  CAS  PubMed  Google Scholar 

  • Mathern, G. W., Pretorius, J. K., Mendoza, D., et al. (1999). Hippocampal N-methyl-D-aspartate receptor subunit mRNA levels in temporal lobe epilepsy patients. Annals of Neurology, 46, 343–358.

    Article  CAS  PubMed  Google Scholar 

  • Novelli, A., Reilly, J. A., Lysko, P. G., & Henneberry, R. C. (1988). Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Research, 451, 205–212.

    Article  CAS  PubMed  Google Scholar 

  • O’Banion, M. K. (1999). Cyclooxygenase-2: Molecular biology, pharmacology, and neurobiology. Critical Reviews in Neurobiology, 13, 45–82.

    PubMed  Google Scholar 

  • Olney, J. W. (1969). Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science, 165, 719–721.

    Article  Google Scholar 

  • Olney, J. W., Collias, R. C., & Sloviter, R. S. (1986). Excitotoxic mechanism of epileptic brain damage. Advances in Neurology, 44, 857–877.

    CAS  PubMed  Google Scholar 

  • Page, L. A., Daly, E., Schmitz, N., Simmons, A., Toal, F., Deeley, Q., Ambery, F., McAlonan, G. M., Murphy, K. C., & Murphy, D. G. M. (2006). In Vivo1H-magnetic resonance spectroscopy study of Amygdala-Hippocampal and Parietal regions in autism. The American Journal of Psychiatry, 12, 2189–2192.

    Article  Google Scholar 

  • Rogawski, M. A. (1995). Excitatory amino acids and seizures. In T. W. Stone (Ed.), CNS neurotransmitters and neuromodulators: Glutamate (pp. 219–237). Boca Raton: CRC Press.

    Google Scholar 

  • Saitoh, O., Karns, C. M., & Courchesne, E. (2001). Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain, 124, 1317–1324.

    Article  CAS  PubMed  Google Scholar 

  • Shinohe, A., Hashimoto, K., Nakamura, K., et al. (2006). Increased serum levels of glutamate in adult patients with autism. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 30, 1472–1477.

    Article  CAS  Google Scholar 

  • Zilbovicius, M., Boddaert, N., Belin, P., et al. (2000). Temporal lobe dysfunction in childhood autism: A PET study. The American Journal of Psychiatry, 157, 1988–1993.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work has been partly supported by Sultan Qaboos University Internal grant (Grant # IG/AGR/FOOD/11/02) and the Research Council, Oman (Grant # RC/AGR/FOOD/11/01). This work has been also supported by the Alzheimer’s Association (grant # IIRG- 08–89545) and by the Rebecca Cooper Foundation (Australia). Dr. Nady Braidy is the recipient of an Alzheimer’s Australia Viertel Foundation Postdoctoral Research Fellowship at the University of New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Essa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Essa, M.M., Braidy, N., Subash, S., Vijayan, R.K., Guillemin, G.J. (2014). Excitotoxicity in the Pathogenesis of Autism. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_148

Download citation

Publish with us

Policies and ethics