Abstract
Lead (Pb2+) is a known neurotoxicant, but the mechanism of its neurotoxicity is not clearly understood. Several biochemical alterations have been shown to be caused by Pb2+ exposure in mammalian brain, but none of these changes alone can explain the mechanism of Pb2+-induced impairment of learning and memory. The most mechanistically relevant biochemical abnormalities that are directly involved in learning and memory are the excitotoxic effects caused by modulation of the N-methyl-d-aspartate-type glutamate receptors (NMDAR) in glutamatergic synapses. Pb2+ is known to affect not only the expression of the different subunits of the NMDARs but also the ontogenic developmental switch of the various NMDAR subunits that is essential for learning and memory. Overactivation of serine/threonine protein phosphatases (PPs) appears to be involved in these synaptic changes. PPs may not only affect the functions of the various subunits of the NMDAR directly by modulating the phosphorylation state of these subunits but may also affect their downstream function by modulation of the phosphorylation state of the downstream effectors like the cyclic AMP response element binding protein (CREB) and other proteins involved in this process. There is a great need to put these isolated pieces of information together and workout the exact pathway(s) that are disturbed by Pb2+.
Keywords
- Excitotoxicity
- Hippocampus
- Lead
- Learning and memory
- Neurotoxicity
- NMDAR
- Protein phosphatases
This is a preview of subscription content, access via your institution.
Buying options
References
Alagarsamy, S., Saugstad, J., Warren, L., Mansuy, I. M., Gereau, R. W., 4th, & Conn, P. J. (2005). NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology, 49(Suppl. 1), 135–145.
Alberts, A.S., Montminy, M., Shenolikar, S., & Feramisco, J.R. (1994). Expression of a peptide inhibitor of protein phosphatase 1 increases phosphorylation and activity of CREB in NIH 3T3 fibroblasts. Mol Cell Biol 14(7), 4398–4407.
Altmann, L., Sveinsson, K., & Wiegand, H. (1991). Long-term potentiation in rat hippocampal slices is impaired following acute lead perfusion. Neuroscience Letters, 128, 109–112.
Altmann, L., Weinsberg, F., Sveinsson, K., Lilienthal, H., Wiegand, H., & Winneke, G. (1993). Impairment of long-term potentiation and learning following chronic lead exposure. Toxicology Letters, 66, 105–112.
Altmann, L., Gutowski, M., & Wiegand, H. (1994). Effects of maternal lead exposure on functional plasticity in the visual cortex and hippocampus of immature rats. Brain Research. Developmental Brain Research, 81(1), 50–56.
Anderson, K. A., Noeldner, P. K., Reece, K., Wadzinski, B. E., & Means, A. R. (2004). Regulation and function of the calcium/calmodulin-dependent protein kinase IV/protein serine/threonine phosphatase 2A signaling complex. The Journal of Biological Chemistry, 279(30), 31708–31716.
Antonio, M. T., & Lert, M. L. (2000). Study of the neurochemical alterations produced in discrete brain areas by perinatal low-level lead exposure. Life Sciences, 67(6), 635–642.
Atchison, W. D. (2003). Effects of toxic environmental contaminants on voltage-gated calcium channel function: From past to present. Journal of Bioenergetics and Biomembranes, 35, 507–532.
Atchison, W. D., & Narahashi, T. (1984). Mechanism of action of lead on neuromuscular junction. Neurotoxicology, 5, 267–282.
Athos, J., Impey, S., Pineda, V. V., Chen, X., & Storm, D. R. (2002). Hippocampal CRE-mediated gene expression is required for contextual memory formation. Nature Neuroscience, 5, 1119–1120.
Audesirk, G. (1993). Electrophysiology of lead intoxication: Effects on voltage-sensitive ion channels. Neurotoxicology, 14, 137–147.
Bellinger, D. (1995). Lead and neuropsychological function in children: Progress and problems in establishing brain– behavior relationships. Advanced Child Neuropsychology, 3, 12–45.
Bellingr, D. C., & Bellinger, A. M. (2006). Childhood lead poisoning: The torturous path from science to policy. The Journal of Clinical Investigation, 116(4), 853–857.
Bennett, P. C., Moutsoulas, P., Lawen, A., Perini, E., & Ng, K. T. (2003). Novel effects on memory observed following unilateral intracranial administration of okadaic acid, cyclosporine A, FK506 and [MeVal4]CyA. Brain Research, 988(1–2), 56–68.
Bielarczyk, H., Tian, X., & Suszkiw, J. B. (1996). Cholinergic denervation-like changes in rat hippocampus following developmental lead exposure. Brain Research, 708, 108–115.
Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long term potentiation in the hippocampus. Nature, 361, 31–39.
Blitzer, R. D., Iyengar, R., & Landau, E. M. (2005). Postsynaptic signaling networks: Cellular cogwheels underlying long-term plasticity. Biological Psychiatry, 57(2), 113–119.
Borja-Aburto, V. H., Hertz-Picciotto, I., Lopez, M. R., Farias, P., Rios, C., & Blanco, J. (1999). Blood lead levels measured prospectively and risk of spontaneous abortion. American Journal of Epidemiology, 150, 590–597.
Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schultz, G., & Silva, A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 59–68.
Bouton, C. M. L. S., Frelin, L. P., Forde, C. E., Godwin, H. A., & Pevsner, J. (2001). Synaptotagmin i is a molecular target for lead. Journal of Neurochemistry, 76, 1724–1735.
Bozdagi, O., Shan, W., Tanaka, H., Benson, D. L., & Huntley, G. W. (2000). Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron, 28, 245–259.
Braga, M. F. M., Pereira, E. F. R., & Albuquerque, E. X. (1999a). Nanomolar concentrations of lead inhibit glutamatergic and GABAergic transmission in hippocampal neurons. Brain Research, 826, 22–34.
Braga, M. F. M., Pereira, E. F. R., Marchioro, M., & Albuquerque, E. X. (1999b). Lead increases tetrodotoxin-insensitive spontaneous release of glutamate and GABA from hippocampal neurons. Brain Research, 826, 10–21.
Braga, M. F., Pereira, E. F., Mike, A., & Albuquerque, E. X. (2004). Pb2+ via protein kinase C inhibits nicotinic cholinergic modulation of synaptic transmission in the hippocampus. The Journal of Pharmacology and Experimental Therapeutics, 311(2), 700–710.
Bredt, D. S., Ferris, C. D., & Snyder, S. H. (1992). Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. The Journal of Biological Chemistry, 267, 10976–10981.
Bressler, J., Kim, K. A., Chakraborti, T., & Goldstein, G. (1999). Molecular mechanisms of lead neurotoxicity. Neurochemical Research, 24, 595–600.
Busselberg, D., Evans, M. L., Haas, H. L., & Carpenter, D. O. (1993). Blockade of mammalian and invertebrate calcium channels by lead. Neurotoxicology, 14, 249–258.
Caldeira, M. V., Melo, C. V., Pereira, D. B., Carvalho, R. F., Carvalho, A. L., & Duarte, C. B. (2007). BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Molecular and Cellular Neurosciences, 35, 208–219.
Canfield, R. L., Henderson, C. R., Jr., Cory-Slechta, D. A., Cox, C., Jusko, T. A., & Lanphear, B. P. (2003). Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. The New England Journal of Medicine, 348, 1517–1526.
Chan, S. F., & Sucher, N. J. (2001). An NMDA receptor signaling complex with protein phosphatase 2A. The Journal of Neuroscience, 21(20), 7985–7992.
Chirivia, J., Kwok, R., Lamb, N., Hagiwara, M., Montminy, M., & Goodman, R. (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature, 365, 855–859.
Chisolm, J. J., Jr. (2001). Evolution of the management and prevention of childhood lead poisoning: Dependence of advances in public health on technological advances in the determination of lead and related biochemical indicators of its toxicity. Environmental Research, 86, 111–121.
Clarkson, T. W. (1987). Metal toxicity in the central nervous system. Environmental Health Perspectives, 75, 59–64.
Colbran, R. J. (2004). Targeting of calcium/calmodulin-dependent protein kinase II. The Biochemical Journal, 378, 1–16.
Collingridge, G. L., & Bliss, T. V. P. (1987). NMDA receptors – Their role in long-term potentiation. Trends in Neuropharmacology, 10, 288–293.
Collingridge, G. L., & Lester, R. A. (1989). Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacological Reviews, 41, 143–210.
Cordova, F. M., Rodrigues, L. S., Giocomelli, M. B. O., Oliveira, C. S., Posser, T., Dunkley, P. R., & Leal, R. B. (2004). Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Research, 998, 65–72.
Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., & Smith, S. J. (1990). Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science, 247, 470–473.
Davis, S., Vanhoutte, P., Pages, C., Caboche, J., & Laroche, S. (2000). The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. The Journal of Neuroscience, 20(12), 4563–4572.
De Roo, M., Klauser, P., & Muller, D. (2008). LTP promotes a selective long-term stabilization and clustering of dendritic spines. PLoS Biology, 6, 1850–1860.
DeMichele, S. J. (1984). Nutrition of lead. Comparative Biochemistry and Physiology A, 78(3), 401–408.
Dietrich, K. N., Ware, J. H., Salganik, M., Radcliffe, J., Rogan, W. J., Rhoads, G. G., Fay, M. E., Davoli, C. T., Denckla, M. B., Bornschein, R. L., Schwarz, D., Dockery, D. W., Adubato, S., & Jones, R. L. (2004). Effect of chelation therapy on the neuropsychological and behavioral development of lead-exposed children after school entry. Pediatrics, 114, 19–26.
Dorea, J. G. (2004). Mercury and lead during breast-feeding. The British Journal of Nutrition, 92(1), 21–40.
Downing, J. E., & Role, L. W. (1987). Activators of protein kinase C enhance acetylcholine receptor desensitization in sympathetic ganglion neurons. Proceedings of the National Academy of Sciences, 84, 7739–7743.
Durand, G. M., Gregor, P., Zheng, Z., Bennett, M. V. L., Uhl, G. R., & Zukin, R. S. (1992). Cloning of an apparent splice variant of the rat N-methyl-d-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proceedings of the National Academy of Sciences, 89, 9359–9363.
Ehlers, M. D. (2003). Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neuroscience, 6, 231–242.
Evans, M. L., Busselberg, D., & Carpenter, D. O. (1991). Pb2+ blocks calcium currents of cultured dorsal root ganglion cells. Neuroscience Letters, 129, 103–106.
Fenster, C. P., Beckman, M. L., Parker, J. C., Sheffield, E. B., Whitworth, T. L., Quick, M. W., & Lester, R. A. (1999). Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase C. Molecular Pharmacology, 55, 432–443.
Finkelstein, Y., Markowitz, M. E., & Rosen, J. F. (1998). Low-level lead-induced neurotoxicity in children: An update on central nervous system effects. Brain Research Reviews, 27, 168–176.
Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., & Tsai, L. H. (2007). Recovery of learning and memory is associated with chromatin remodelling. Nature, 447(7141), 178–182.
Gasparini, F., Lingenhöhl, K., Stoehr, N., Flor, P. J., Heinrich, M., Vranesic, I., Biollaz, M., Allgeier, H., Heckendorn, R., Urwyler, S., Varney, M. A., Johnson, E. C., Hess, S. D., Rao, S. P., Sacaan, A. I., Santori, E. M., Velicelebi, G., & Kuhn, R. (1999). 2-Methyl-6-(phenylethyl)-pyridine (MPEP), a potent, selective and systematically active mGluR5 receptor antagonist. Neuropharmacology, 38, 1493–1503.
Gavazzo, P., Gazzoli, A., Mazzolini, M., & Marchetti, C. (2001). Lead inhibition of NMDA channels in native and recombinant receptors. Neuroreport, 12(14), 3121–3125.
Gavazzo, P., Zanardi, I., Baranowska-Bosiacka, I., & Marchetti, C. (2008). Molecular determinants of Pb2+ interaction with NMDA receptor channels. Neurochemistry International, 52, 329–337.
Genoux, D., Haditsch, U., Knobloch, M., Michalon, A., Storm, D., & Mansuy, I. M. (2002). Protein phosphatase 1 is a molecular constraint on learning and memory. Nature, 418(6901), 970–975.
Genoux, D., Bezerra, P., & Montgomery, J. M. (2011). Intra-spaced stimulation and protein phosphatase 1 dictate the direction of synaptic plasticity. The European Journal of Neuroscience, 33(10), 1761–1770.
Gilbert, M. E., & Lasley, S. M. (2002). Long-term consequences of developmental exposure to lead or polychlorinated biphenyls: Synaptic transmission and plasticity in the rodent CNS. Environmental Toxicology and Pharmacology, 12, 105–117.
Gilbert, M. E., & Lasley, S. M. (2007). Developmental lead (Pb) exposure reduces the ability of the NMDA antagonist MK-801 to suppress long-term potentiation (LTP) in the rat dentate gyrus, in vivo. Neurotoxicology and Teratology, 29(2007), 385–393.
Gilbert, M. E., & Mack, C. M. (1990). The NMDA antagonist, MK-801, suppresses long-term potentiation, kindling, and kindling-induced potentiation in the perforant path of the unanesthetized rat. Brain Research, 519, 89–96.
Gilbert, M., & Mack, C. (1998). Chronic lead exposure accelerates decay of long-term potentiation in rat dentate gyrus in vivo. Brain Research, 789, 139–149.
Gilbert, M. E., Mack, C. M., & Lasley, S. M. (1996). Chronic developmental lead exposure increases the threshold for long-term potentiation in rat dentate gyrus in vivo. Brain Research, 736, 118–124.
Gilbert, M. E., Mack, C. M., & Lasley, S. M. (1999a). The influence of developmental period of lead exposure on long-term potentiation in the rat dentate gyrus in vivo. Neurotoxicology, 20, 57–70.
Gilbert, M. E., Mack, M. E., & Lasley, S. M. (1999b). Developmental lead exposure reduces the magnitude of long-term potentiation: A dose–response analysis. Neurotoxicology, 20, 71–82.
Goyer, R. A. (1995). Nutrition and metal toxicity. The American Journal of Clinical Nutrition, 61(Suppl), 646S–650S.
Goyer, R. A., & Clarkson, T. W. (2001). Toxic effects of metals. In C. D. Klaassen (Ed.), Casarett and Doull’s toxicology: The basic science of poisons (6th ed., pp. 811–867). New York: McGraw-Hill.
Gräff, J., Koshibu, K., Jouvenceau, A., Dutar, P., & Mansuy, I. M. (2010). Protein phosphatase 1-dependent transcriptional programs for long-term memory and plasticity. Learning & Memory, 17(7), 355–363.
Guilarte, T. R. (1997). Glutamatergic system and developmental lead neurotoxicity. Neurotoxicology, 18, 665–672.
Guilarte, T. R., & McGlothan, J. L. (1998). Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure. Brain Research, 790, 98–107.
Guilarte, T. R., & McGlothan, J. L. (2003). Selective decrease in NR1 subunit splice variant mRNA in the hippocampus of Pb2+-exposed rats: Implications for synaptic targeting and cell surface expression of NMDAR complexes. Brain Research. Molecular Brain Research, 113(1–2), 37–43.
Guilarte. T.R., Miceli, R.C. & Jett, D.A. (1994). Neurochemical aspects of hippocampal and cortical Pb2+ neurotoxicity. Neurotoxicology. 15(3), 459–66.
Guilarte, T. R., Miceli, R. C., & Jett, D. A. (1995). Biochemical evidence of an interaction of lead at the zinc allosteric sites of the NMDA receptor complex: Effects of neuronal development. Neurotoxicology, 16, 63–71.
Guilarte, T. R., McGlothan, J. L., & Nihei, M. K. (2000). Hippocampal expression of N-methyl-d-aspartate receptor (NMDAR1) subunit splice variant mRNA is altered by developmental exposure to Pb2+. Molecular Brain Research, 76, 299–305.
Gutowski, M., Altmann, L., Sveinsson, K., & Wiegand, H. (1998). Synaptic plasticity in the CA1 and CA3 hippocampal region of pre- and postnatally lead-exposed rats. Toxicology Letters, 95, 195–203.
Haege, S., Galetzka, D., Zechner, U., Haaf, T., Gamerdinger, M., Behl, C., Hiemke, C., & Schmitt, U. (2010). Spatial learning and expression patterns of PP1 mRNA in mouse hippocampus. Neuropsychobiology, 61(4), 188–196.
Hansra, G., Bornancin, F., Whelan, R., Hemmings, B. A., & Parker, P. J. (1996). 12-O-Tetradecanoylphorbol-13-acetate-induced dephosphorylation of protein kinase Calpha correlates with the presence of a membrane-associated protein phosphatase 2A heterotrimer. The Journal of Biological Chemistry, 271, 32785–32788.
Hardingham, G. E., Fukunaga, Y., & Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nature Neuroscience, 5(5), 405–414.
Hartmann, M., Heumann, R., & Lessmann, V. (2001). Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. The EMBO Journal, 20, 5887–5897.
Hashemzadeh-Gargari, H., & Guilarte, T. R. (1999). Divalent cations modulate N-methyl-d-aspartate receptor function at the glycine site. The Journal of Pharmacology and Experimental Therapeutics, 290, 1356–1362.
Hassel, B., & Dingledine, R. (2006). Glutamate. In G. J. Siegel, R. W. Albers, S. T. Brady, & D. L. Price (Eds.), Basic neurochemistry: Molecular, cellular and medical aspects (7th ed., pp. 267–290). San Diego, CA: Elsevier/Academic.
Havekes, R., Nijholt, I. M., Luiten, P. G., & Van der Zee, E. A. (2006). Differential involvement of hippocampal calcineurin during learning and reversal learning in a Y-maze task. Learning & Memory, 13(6), 753–759.
Ho, Y., Logue, E., Callaway, C. W., & DeFranco, D. B. (2007). Different mechanisms account for extracellular-signal regulated kinase activation in distinct brain regions following global ischemia and reperfusion. Neuroscience, 145(1), 248–255.
Hoffmann, H., Gremme, T., Hatt, H., & Gottmann, K. (2000). Synaptic activity dependent developmental regulation of NMDA receptor subunit expression in cultured neocortical neurons. Journal of Neurochemistry, 75, 1590–1599.
Holtzman, D., Olson, J. E., DeVries, C., & Bensch, K. (1987). Lead toxicity in primary cultured cerebral astrocytes and cerebellar granular neurones. Toxicology and Applied Pharmacology, 89, 211–225.
Huang, C. C., & Hsu, K. S. (2006). Sustained activation of metabotropic glutamate receptor 5 and protein tyrosine phosphatases mediate the expression of (S)-3,5-dihydroxyphenylglycine-induced long-term depression in the hippocampal CA1 region. Journal of Neurochemistry, 96, 179–194.
Ishihara, K., Alkondon, M., Montes, J. G., & Albuquerque, E. X. (1995). Ontogenically related properties of N-methyl-d-aspartate receptors in rat hippocampal neurons and the age-specific sensitivity of developing neurons to lead. The Journal of Pharmacology and Experimental Therapeutics, 279, 1459–1470.
Ivanov, A., Pellegrino, C., Rama, S., Dumalska, I., Salyha, Y., Ben-Ari, Y., & Medina, I. (2006). Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. The Journal of Physiology, 572(Pt 3), 789–798.
Izquierdo, I. (1993). Long-term potentiation and the mechanism of memory. Drug Development Research, 30, 1–17.
Jiang, X., Tian, F., Mearow, K., Okagaki, P., Lipsky, R. H., & Marini, A. M. (2005). The excitoprotective effect of N-methyl-d-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons. Journal of Neurochemistry, 94, 713–722.
Kandel, E. R. (2001). The molecular biology of memory storage: A dialogue between genes and synapses. Science, 294, 1030–1038.
Kawamura, Y., Manita, S., Nakamura, T., Inoue, M., Kudo, Y., & Miyakawa, H. (2004). Glutamate release increases during mossy-CA3 LTP but not during Schaffer-CA1 LTP. The European Journal of Neuroscience, 19, 1591–1600.
Kim, K. A., Chakraborti, T., Golstein, G., Johnston, M., & Bressler, J. (2002). Exposure to lead elevates induction of zif268 and ARC mRNA in rats after electroconvulsive shock: The involvement of protein kinase C. Journal of Neuroscience Research, 69, 268–277.
Knobloch, M., Farinelli, M., Konietzko, U., Nitsch, R. M., & Mansuy, I. M. (2007). Aβ oligomer-mediated long-term potentiation impairment involves protein phosphatase 1-dependent mechanisms. The Journal of Neuroscience, 27, 7648–7653.
Kobayashi, T., & Mori, Y. (1998). Ca2+ channel antagonists and neuroprotection from cerebral ischemia. European Journal of Pharmacology, 363, 1–15.
Kober, T. E., & Cooper, G. P. (1976). Lead competitively inhibits calcium-dependent synaptic transmission in the bullfrog sympathetic ganglion. Nature, 262, 704–705.
Koshibu, K., Gräff, J., Beullens, M., Heitz, F. D., Berchtold, D., Russig, H., Farinelli, M., Bollen, M., & Mansuy, I. M. (2009). Protein phosphatase 1 regulates the histone code for long-term memory. The Journal of Neuroscience, 29(41), 13079–13089.
Koshibu, K., Gräff, J., & Mansuy, I. M. (2011). Nuclear protein phosphatase-1: An epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience, 173, 30–36.
Krupp, J. J., Vissel, B., Thomas, C. G., Heinemann, S. F., & Westbrook, G. L. (2002). Calcineurin acts via the C-terminus of NR2A to modulate desensitization of NMDA receptors. Neuropharmacology, 42(5), 593–602.
Kuhlmann, A. C., McGlothan, J. L., & Guilarte, T. R. (1997). Developmental lead exposure causes spatial learning deficits in adult rats. Neuroscience Letters, 233, 101–104.
Lanphear, B. P., Dietrich, K., Auinger, P., & Cox, C. (2000). Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Reports, 115, 521–529.
Lasley, S. M., & Gilbert, M. E. (1996). Presynaptic glutamatergic function in dentate gyrus in vivo is diminished by chronic exposure to inorganic lead. Brain Research, 736, 125–134.
Lasley, S. M., & Gilbert, M. E. (1999). Lead inhibits the rat N-methyl-d-aspartate receptor channel by binding to a site distinct from the zinc allosteric site. Toxicology and Applied Pharmacology, 159(3), 224–233.
Lasley, S. M., & Gilbert, M. E. (2002). Rat hippocampal glutamate and GABA release exhibit biphasic effects as a function of chronic lead exposure level. Toxicological Sciences, 66(1), 139–147.
Lasley, S. M., Green, M. C., & Gilbert, M. E. (2001). Rat hippocampal NMDA receptor binding as a function of chronic lead exposure level. Neurotoxicology and Teratology, 23, 185–189.
Lau, W. K., Yeung, C. W., Lui, P. W., Cheung, L. H., Poon, N. T., & Yung, K. K. (2002). Different trends in modulation of NMDAR1 and NMDAR2B gene expression in cultured cortical and hippocampal neurons after lead exposure. Brain Research, 932(1–2), 10–24.
Laurie, D. J., & Seeburg, P. H. (1994). Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. The Journal of Neuroscience, 14, 3180–3194.
Lee, Y. S., & Silva, A. J. (2009). The molecular and cellular biology of enhanced cognition. Nature Reviews. Neuroscience, 10, 126–140.
Lee, H. K., Kameyama, K., Huganir, R. L., & Bear, M. F. (1998). NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron, 21, 1067–1078.
Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F., & Huganir, R. L. (2000). Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 405, 955–959.
Levitan, I. B. (1999). Modulation of ion channels by protein phosphorylation. How the brain works. Advances in Second Messenger and Phosphoprotein Research, 33, 3–22.
Lieberman, D. N., & Mody, I. (1994). Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase. Nature, 369, 235–239.
Lindhal, L. S., Bird, L., Legare, M. E., Mikeska, G., Bratton, G. R., & Tiffany-Castiglioni, E. (1999). differential ability of astroglia and neuronal cells to accumulate lead: Dependence on cell type and on degree of differentiation. Toxicological Sciences, 50, 236–243.
Lindlbauer, R., Mohrmann, R., Hatt, H., & Gottmann, K. (1998). Regulation of kinetic and pharmacological properties of synaptic NMDA receptors depends on presynaptic exocytosis in rat hippocampal neurones. The Journal of Physiology, 508(Pt. 2), 495–502.
Liu, L., Wong, T. P., Pozza, M. F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, Y. P., & Wang, Y. T. (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 304(5673), 1021–1024.
Liu, F., Grundke-Iqbal, I., Iqbal, K., & Gong, C. X. (2005). Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. The European Journal of Neuroscience, 22(8), 1942–1950.
Loikkanen, J., Naarala, J., Vahakangas, K. H., & Savolainen, K. H. (2003). Glutamate increases toxicity of inorganic lead in GT1-7 neurons: Partial protection induced by flunarizine. Archives of Toxicology, 77, 663–671.
Ma, O. K., & Sucher, N. J. (2004). Molecular interaction of NMDA receptor subunit NR3A with protein phosphatase 2A. Neuroreport, 15(9), 1447–1450.
Ma, L., Zablow, L., Kandel, E. R., & Siegelbaum, S. A. (1999). Cyclic AMP induces functional presynaptic boutons in hippocampal CA3-CA1 neuronal cultures. Nature Neuroscience, 2, 24–30.
Madison, D. V., Malenka, R. C., & Nicoll, R. A. (1991). Mechanisms underlying long-term potentiation of synaptic transmission. Annual Review of Neuroscience, 14, 379–397.
Malenka, R. C., & Nicoll, R. A. (1993). NMDA-receptor-dependent synaptic plasticity: Multiple forms and mechanisms. Trends in Neurosciences, 16, 521–527.
Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation – A decade of progress? Science, 285, 1870–1874.
Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126.
Manahan-Vaughan, D., & Braunewell, K. H. (2005). The metabotropic glutamate receptor, mGluR5, is a key determinant of good and bad spatial learning performance and hippocampal synaptic plasticity. Cerebral Cortex, 15, 1703–1713.
Manahan-Vaughan, D., Ngomba, R. T., Storto, M., Kulla, A., Catania, M. V., Chiechio, S., Rampello, L., Passarelli, F., Capece, A., Reymann, K. G., & Nicoletti, F. (2003). An increased expression of the mGlu5 receptor protein following LTP induction at the perforant path-dentate gyrus synapse in freely moving rats. Neuropharmacology, 44, 17–25.
Mansuy, I. M., & Shenolikar, S. (2006). Protein serine/threonine phosphatases in neuronal plasticity and disorders of learning and memory. Trends in Neurosciences, 29(12), 679–686.
Marchetti, C. (2003). Molecular targets of lead in brain neurotoxicity. Neurotoxicity Research, 5(3), 221–236.
Margottil, E., & Domenici, L. (2003). NR2A but not NR2B n-methyl-d-aspartate receptor subunit is altered in the visual cortex of BDNF-knock-out mice. Cellular and Molecular Neurobiology, 23, 165–174.
Martin, K. C., Casadio, A., Zhu, H., Yaping, E., Rose, J. C., Chen, M., Bailey, C. H., & Kandel, E. R. (1997). Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: A function for local protein synthesis in memory storage. Cell, 91, 927–938.
Massicotte, G., & Baudry, M. (1991). Triggers and substrates of hippocampal synaptic plasticity. Neuroscience and Biobehavioral Reviews, 15, 415–423.
Mauna, J. C., Miyamae, T., Pulli, B., & Thiels, E. (2010). Protein phosphatases 1 and 2A are both required for long-term depression and associated dephosphorylation of cAMP response element binding protein in hippocampal area CA1 in vivo. Hippocampus, 21(10), 1093–1104.
Mayadevi, M., Praseeda, M., Kumar, K. S., & Omkumar, R. V. (2002). Sequence determinants on the NR2A and NR2B subunits of NMDA receptor responsible for specificity of phosphorylation by CaMKII. Biochimica et Biophysica Acta, 1598, 40–45.
McNamara, R. K., & Skelton, R. W. (1993). The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Research. Brain Research Reviews, 18, 33–49.
McNaughton, B. L. (1993). The mechanism of expression of long-term enhancement of hippocampal synapses: Current issues and theoretical implications. Annual Review of Physiology, 55, 375–396.
Mike, A., Pereira, E. F., & Albuquerque, E. X. (2000). Ca(2+)-sensitive inhibition by Pb(2+) of alpha7-containing nicotinic acetylcholine receptors in hippocampal neurons. Brain Research, 873(1), 112–123.
Miller, C. A., Campbell, S. L., & Sweatt, J. D. (2008). DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiology of Learning and Memory, 89(4), 599–603.
Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24, 186–191.
Minnema, D. J., Michaelson, I. A., & Cooper, G. P. (1988). Calcium efflux and neurotransmitter release from rat hippocampal synaptosomes exposed to lead. Toxicology and Applied Pharmacology, 92, 351–357.
Mizuno, M., Yamada, K., Maekawa, N., Saito, K., Seishima, M., & Nabeshima, T. (2002). CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behavioural Brain Research, 133, 135–141.
Monaghan, D. T., Holets, V. R., Toy, D. W., & Cotman, C. W. (1983). Anatomical distributions of four pharmacologically distinct 3H-l-glutamate binding sites. Nature, 306, 176–179.
Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., & Seeburg, P. H. (1992). Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science, 256, 1217–1221.
Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., & Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12, 529–540.
Moody, W. J. (1998). Control of spontaneous activity during development. Journal of Neurobiology, 37, 97–109.
Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., & Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354, 31–37.
Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.
Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature, 319, 774–776.
Moss, S. J., McDonald, B. J., Rudhard, Y., & Schoepfer, R. (1996). Phosphorylation of the predicted major intracellular domains of the rat and the chick neuronal nicotinic acetylcholine receptor 7 subunit by cAMP-dependent protein kinase. Neuropharmacology, 35, 1023–1028.
Mulkey, R. M., Herron, C. E., & Malenka, R. C. (1993). An essential role for protein phosphatases in hippocampal long-term depression. Science, 261, 1051–1055.
Mulkey, R. M., Endo, S., Shenolikar, S., & Malenka, R. C. (1994). Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature, 369, 486–488.
Naie, K., & Manahan-Vaughan, D. (2004). Regulation by metabotropic glutamate receptor 5 of LTP in the dentate gyrus of freely moving rats: Relevance for learning and memory formation. Cerebral Cortex, 14, 189–198.
Neal, A. P., & Guilarte, T. R. (2010). Molecular neurobiology of lead (Pb2+): Effects on synaptic function. Molecular Neurobiology, 42(3), 151–160.
Neal, A. P., Stansfield, K. H., Worley, P. F., Thompson, R. E., & Guilarte, T. R. (2010). Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: Potential role of NMDA receptor-dependent BDNF signaling. Toxicological Sciences, 116(1), 249–263.
Neal, A. P., Worley, P. F., & Guilarte, T. R. (2011). Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology, 32, 281–289.
Needleman, H. L., Gunnoe, C., Leviton, A., Reed, R., Peresie, H., Maher, C., & Barrett, P. (1979). Deficits in psychologic and classroom performance of children with elevated dentine lead levels. The New England Journal of Medicine, 300, 689–695.
Nevin, R. (2000). How lead exposure relates to temporal changes in IQ, violent crime, and unwed pregnancy. Environmental Research, 83, 1–22.
Neyman, S., & Manahan-Vaughan, D. (2008). Metabotropic glutamate receptor 1 (mGluR1) and 5 (mGluR5) regulate late phases of LTP and LTD in the hippocampal CA1 region in vitro. The European Journal of Neuroscience, 27, 1345–1352.
Nihei, M. K., & Guilarte, T. R. (1999). NMDAR-2A subunit protein expression is reduced in the hippocampus of rats exposed to Pb2+ during development. Molecular Brain Research, 66, 42–49.
Nihei, M. K., & Guilarte, T. R. (2001). Molecular changes in glutamatergic synapses induced by Pb2+: Association with deficits of LTP and spatial learning. Neurotoxicology, 22, 635–643.
Nihei, M. K., Desmond, N. L., McGlothan, J. L., Kuhlmann, A. C., & Guilarte, R. T. (2000). N-methyl-d-aspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning. Neuroscience, 99, 233–242.
Nihei, M. K., McGlothan, J. L., Toscano, C. D., & Guilarte, T. R. (2001). Low level Pb2+ exposure affects hippocampal protein kinase C gamma gene and protein expression in rats. Neuroscience Letters, 298, 212–216.
Norman, E. D., Thiels, E., Barrionuevo, G., & Klann, E. (2000). Long-term depression in the hippocampus in vivo is associated with protein phosphatase-dependent alterations in extracellular signal-regulated kinase. Journal of Neurochemistry, 74(1), 192–198.
Oberbeck, D. L., McCormack, S., & Houpt, T. A. (2010). Intra-amygdalar okadaic acid enhances conditioned taste aversion learning and CREB phosphorylation in rats. Brain Research, 1348, 84–94.
Omelchenko, I. A., Nelson, C. S., Marino, J. L., & Allen, C. N. (1996). The sensitivity of N-methyl-d-aspartate receptors to lead inhibition is dependent on the receptor subunit composition. The Journal of Pharmacology and Experimental Therapeutics, 278(1), 15–20.
Omelchenko, I. A., Nelson, C. S., & Allen, C. N. (1997). Lead inhibition of N-methyl-d-aspartate receptors containing NR2A NR2C, and NR2D subunits. The Journal of Pharmacology and Experimental Therapeutics, 282, 1458–1464.
Otmakhov, N., Tao-Cheng, J. H., Carpenter, S., Asrican, B., Dosemeci, A., Reese, T. S., & Lisman, J. (2004). Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. The Journal of Neuroscience, 24(42), 9324–9331.
Ozawa, S., Kamiya, H., & Tsuzuki, K. (1998). Glutamate receptors in the mammalian central nervous system. Progress in Neurobiology, 54, 581–618.
Paoletti, P., Perin-Dureau, F., Fayyazuddin, A., Le Goff, A., Callebaut, I., & Neyton, J. (2000). Molecular organization of a zinc binding N-terminal modulatory domain in a NMDA receptor subunit. Neuron, 28(3), 911–925.
Peng, S., Hajela, R. K., & Atchison, W. D. (2002). Characteristics of block by Pb2+ of function of human neuronal L-, N-, and R-type Ca2+ channels transiently expressed in human embryonic kidney 293 cells. Molecular Pharmacology, 62, 1418–1430.
Perez-Otano, I., & Ehlers, M. (2004). Learning from NMDA receptor trafficking: Clues to the development and maturation of glutamatergic synapses. Neuro-Signals, 13, 175–189.
Pozzo-Miller, L. D., Gottschalk, W., Zhang, L., McDermott, K., Du, J., Gopalakrishnan, R., Oho, C., Sheng, Z. H., & Lu, B. (1999). Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. The Journal of Neuroscience, 19, 4972–4983.
Prybylowski, K., & Wenthold, R. J. (2004). N-methyl-d-aspartate receptors: Subunit assembly and trafficking to the synapse. The Journal of Biological Chemistry, 279, 9673–9676.
Rachline, J., Perin-Dureau, F., Le Goff, A., Neyton, J., & Paoletti, P. (2005). The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. The Journal of Neuroscience, 25(2), 308–317.
Rahman, A., Brew, B. J., & Guillemin, G. J. (2010). Lead dysregulates serine/threonine protein phosphatases in human neurons. Neurochemical Research, 36, 195–204.
Rahman, A., Khan, K. M., Al-Khaledi, G., Khan, I., & Al-Shemary, T. (2012). Over activation of hippocampal serine/threonine protein phosphatases PP1 and PP2A is involved in lead-induced deficits in learning and memory in young rats. Neurotoxicology, 33, 370–383 [Epub ahead of print]: DOI:10.1016/j.neuro.2012.02.014.
Rajanna, B., Rajanna, S., Hall, E., & Yallapragada, P. R. (1997). In vitro metal inhibition of N-methyl-d-aspartate specific glutamate receptor binding in neonatal and adult rat brain. Drug and Chemical Toxicology, 20(1–2), 21–29.
Raymond, L. A., Tingley, W. G., Blackstone, C. D., Roche, K. W., & Huganir, R. L. (1994). Glutamate receptor modulation by protein phosphorylation. The Journal of Physiology, 88, 181–192.
Reddy, G. R., Devi, B. C., & Chetty, C. S. (2007). Developmental lead neurotoxicity: Alterations in brain cholinergic system. Neurotoxicology, 28(2), 402–407.
Ricciarelli, R., & Azzi, A. (1998). Regulation of recombinant PKC alpha activity by protein phosphatase 1 and protein phosphatase 2A. Archives of Biochemistry and Biophysics, 355, 197–200.
Roberson, E. D., English, J. D., & Sweatt, J. D. (1996). A biochemist’s view of long-term potentiation. Learning & Memory, 3(1), 1–24.
Robinson, G. B., & Reed, G. D. (1992). Effect of MK-801 on the induction and subsequent decay of long-term potentiation in the unanesthetized rabbit hippocampal dentate gyrus. Brain Research, 569, 78–85.
Roche, K. W., Tingley, W. G., & Huganir, R. L. (1994). Glutamate receptor phosphorylation and synaptic plasticity. Current Opinion in Neurobiology, 4, 383–388.
Rogan, W. J., Dietrich, K. N., Ware, J. H., Dockery, D. W., Salganik, M., Radcliffe, J., Jones, R. L., Ragan, N. B., Chisolm, J. J., & Rhoads, G. G. (2001). The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. The New England Journal of Medicine, 344, 1421–1426.
Savolainen, K. M., Loikkanen, J., Eerikainen, S., & Naarala, J. (1998a). Glutamate-stimulated ROS production in neuronal cultures: Interactions with lead and the cholinergic system. Neurotoxicology, 19, 669–674.
Savolainen, K. M., Loikkanen, J., Eerikainen, S., & Naarala, J. (1998b). Interactions of excitatory neurotransmitters and xenobiotics in excitotoxicity and oxidative stress: Glutamate and lead. Toxicology Letters, 102–103, 363–367.
Scheetz, A. J., & Constantine-Paton, M. (1994). Modulation of NMDA receptor function: Implications for vertebrate neural development. The FASEB Journal, 8, 745–752.
Schultz, S., Siemer, H., Krug, M., & Hollt, V. (1999). Direct evidence for biphasic cAMP responsive element-binding protein phosphorylation during long-term potentiation in the rat dentate gyrus in vivo. The Journal of Neuroscience, 19, 5683–5692.
Seguela, P., Wadiche, J., Dineley-Miller, K., Dani, J. A., & Patrick, J. W. (1993). Molecular cloning, functional properties and distribution of rat brain alpha 7: A nicotinic cation channel highly permeable to calcium. The Journal of Neuroscience, 13, 596–604.
Selevan, S. G., Rice, D. C., Hogan, K. A., Euling, S. Y., Pfahles- Hutchens, A., & Bethel, J. (2003). Blood lead concentration and delayed puberty in girls. The New England Journal of Medicine, 348, 1527–1536.
Sharifi, A. M., Baniasadi, S., Jorjani, M., Rahimi, F., & Bakhshayesh, M. (2002). Investigation of acute lead poisoning on apoptosis in rat hippocampus in vivo. Neuroscience Letters, 329, 45–48.
Shields, S. M., Ingebritsen, T. S., & Kelly, P. T. (1985). Identification of protein phosphatase 1 in synaptic junctions: Dephosphorylation of endogenous calmodulin-dependent kinase II and synapse-enriched phosphoproteins. The Journal of Neuroscience, 5(12), 3414–3422.
Shimizu, E., Tang, Y. P., Rampon, C., & Tsien, J. Z. (2000). NMDA receptor-dependent synaptic reinforcement as a process for memory consolidation. Science, 290, 1170–1174.
Silbergeld, E. K. (1992). Mechanisms of lead neurotoxicity, or looking beyond the lamppost. The FASEB Journal, 6(13), 3201–3206.
Silverstein, A. M., Barrow, C. A., Davis, A. J., & Mumby, M. C. (2002). Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proceedings of the National Academy of Sciences, 99(7), 4221–4226.
Simons, T. J. B. (1993). Lead-calcium interactions in cellular lead toxicity. Neurotoxicology, 14, 77–85.
Simons, T. J. B., & Pocock, G. (1987). Lead enters bovine adrenal medullary cells through calcium channels. Journal of Neurochemistry, 48, 383–389.
Small, D. L., Murray, C. L., Mealing, G. A., Poulter, M. O., Buchan, A. M., & Morley, P. (1998). Brain derived neurotrophic factor induction of N-methyl-d-aspartate receptor subunit NR2A expression in cultured rat cortical neurons. Neuroscience Letters, 252, 211–214.
Soderling, T. R., & Derkach, V. A. (2000). Postsynaptic protein phosphorylation and LTP. Trends in Neurosciences, 23, 75–80.
Struzynska, L. (2009). A glutamatergic component of lead toxicity in adult brain: The role of astrocytic glutamate transporters. Neurochemistry International, 55, 151–156.
Sui, L., Ge, S. Y., Ruan, D. Y., Chen, J. T., Xu, Y. Z., & Wang, M. (2000). Age-related impairment of long-term depression in area CA1 and dentate gyrus of rat hippocampus following developmental lead exposure in vitro. Neurotoxicology and Teratology, 22, 381–387.
Sun, L., Zhao, Z. Y., Hu, J., & Zhou, X. L. (2005). Potential association of lead exposure during early development of mice with alteration of hippocampus nitric oxide levels and learning memory. Biomedical and Environmental Sciences, 18, 375–378.
Suszkiw, J. B. (2004). Presynaptic disruption of transmitter release by lead. Neurotoxicology, 25, 599–604.
Suzuki, K., Sato, M., Morishima, Y., & Nakanishi, S. (2005). Neuronal depolarization controls brain-derived neurotrophic factor-induced upregulation of NR2C NMDA receptor via calcineurin signaling. The Journal of Neuroscience, 25(41), 9535–9543.
Swanson, K. L., Marchioro, M., Ishihara, K., Alkondon, M., Pereira, E. F. R., & Albuquerque, E. X. (1997). Neuronal targets of lead in the hippocampus: Relationship to low-level lead intoxication. Comprehensive Toxicology, 11, 470–491.
Swope, S. L., Moss, S. J., Raymond, L. A., & Huganir, R. L. (1999). Regulation of ligand-gated ion channels by protein phosphorylation. Advances in Second Messenger and Phosphoprotein Research, 33, 49–78.
Tartaglia, N., Du, J., Tyler, W. J., Neale, E., Pozzo-Miller, L., & Lu, B. (2001). Protein synthesis-dependent and -independent regulation of hippocampal synapses by brain-derived neurotrophic factor. The Journal of Biological Chemistry, 276, 37585–37593.
Teyler, T. J., & DiScenna, P. (1987). Long-term potentiation. Annual Review of Neuroscience, 10, 131–161.
Thiels, E., Norman, E. D., Barrionuevo, G., & Klann, E. (1998). Transient and persistent increases in protein phosphatase activity during long-term depression in the adult hippocampus in vivo. Neuroscience, 86(4), 1023–1029.
Thiels, E., Kanterewicz, B. I., Norman, E. D., Trzaskos, J. M., & Klann, E. (2002). Long-term depression in the adult hippocampus in vivo involves activation of extracellular signal-regulated kinase and phosphorylation of Elk-1. The Journal of Neuroscience, 22(6), 2054–2062.
Tiffany-Castiglioni, E. (1993). Cell culture models for lead toxicity in neuronal and glial cells. Neurotoxicology, 14, 513–536.
Tiffany-Castiglioni, E., Zmudzki, J., & Bratton, G. R. (1986). Cellular targets of lead toxicity: In vitro models. Toxicology, 42, 305–315.
Tingley, W. G., Ehlers, M. D., Kameyama, K., Doherty, C., Ptak, J. B., Riley, C. T., & Huganir, R. L. (1997). Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-d-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. The Journal of Biological Chemistry, 272, 5157–5166.
Tong, G., Shepherd, D., & Jahr, C. E. (1995). Synaptic desensitization of NMDA receptors by calcineurin. Science, 267(5203), 1510–1512.
Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R., & Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature, 402, 421–425.
Topolnik, L., Azzi, M., Morin, F., Kougioumoutzakis, A., & Lacaille, J. C. (2006). MGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones. The Journal of Physiology, 575, 115–131.
Toscano, C. D., & Guilarte, T. R. (2005). Lead neurotoxicity: From exposure to molecular effects. Brain Research Reviews, 49, 529–555.
Toscano, C. D., Hashemzadeh-Gargari, H., McGlothan, J. L., & Guilarte, T. R. (2002). Developmental Pb2+ exposure alters NMDAR subtypes and reduces CREB phosphorylation in the rat brain. Developmental Brain Research, 139, 217–226.
Toscano, C. D., McGlothan, J. L., & Guilarte, T. R. (2003). Lead exposure alters cyclic-AMP response element binding protein phosphorylation and binding activity in the developing rat brain. Developmental Brain Research, 145, 219–228.
Toscano, C. D., O’Callaghan, J. P., & Guilarte, T. R. (2005). Calcium/calmodulin-dependent protein kinase II activity and expression are altered in the hippocampus of Pb2+-exposed rats. Brain Research, 1044, 51–58.
Ujihara, H., & Albuquerque, E. X. (1992). Developmental change of the inhibition by lead of NMDA activated currents in cultured hippocampal neurons. The Journal of Pharmacology and Experimental Therapeutics, 263, 868–875.
United States Centers for Disease Control and Prevention. Atlanta: CDC; (2002). Managing elevated blood lead levels among young children: Recommendations from the advisory committee on childhood lead poisoning prevention. CDC, Atlanta, GA, United States.
Vanhoutte, P., & Bading, H. (2003). Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Current Opinion in Neurobiology, 13(3), 366–371.
Viola, H., Furman, M., Izquierdo, L. A., Alonso, M., Barros, D. M., de Souza, M. M., Izquierdo, I., & Medina, J. H. (2000). Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus: Effect of novelty. The Journal of Neuroscience, 20(23), RC112.
Wadzinski, B. E., Wheat, W. H., Jaspers, S., Peruski, L. F., Jr., Lickteig, R. L., Johnson, G. L., & Klemm, D. J. (1993). Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Molecular and Cellular Biology, 13(5), 2822–2834.
Walz, C., Jungling, K. L., & Gottmann, K. (2006). Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. Journal of Neurophysiology, 96, 3512–3516.
Wang, J. H., & Kelly, P. T. (1997). Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signaling mechanisms in hippocampal CA1 neurons. The Journal of Neuroscience, 17, 4600–4611.
Wang, L. Y., Orser, B. A., Brautigan, D. L., & MacDonald, J. F. (1994). Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2A. Nature, 369, 230–232.
Wang, L., Luo, L., Luo, Y. Y., Gu, Y., & Ruan, D. Y. (2007). Effects of Pb2+ on muscarinic modulation of glutamatergic synaptic transmission in rat hippocampal CA1 area. Neurotoxicology, 28(3), 499–507.
Waters, K.A. & Machaalani, R. (2004). NMDA receptors in the developing brain and effects of noxious insults. Neurosignals 13,162–174.
Westphal, R. S., Anderson, K. A., Means, A. R., & Wadzinski, B. E. (1998). A signaling complex of Ca2+-calmodulin-dependent protein kinase IV and protein phosphatase 2A. Science, 280(5367), 1258–1261.
Westphal, R. S., Tavalin, S. J., Lin, J. W., Alto, N. M., Fraser, I. D., Langeberg, L. K., Sheng, M., & Scott, J. D. (1999). Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science, 285(5424), 93–96.
White, L. D., Cory-Slechta, D. A., Gilbert, M. E., Tiffany-Castiglioni, E., Zawia, N. H., Virgolini, M., Rossi-George, A., Lasley, S. M., Qian, Y. C., & Basha, M. R. (2007). New and evolving concepts in the neurotoxicology of lead. Toxicology and Applied Pharmacology, 225(1), 1–27.
Winder, D. G., & Sweatt, J. D. (2001). Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nature Reviews. Neuroscience, 2(7), 461–474.
Xiao, C., Gu, Y., Zhou, C. Y., Wang, L., Zhang, M. M., & Ruan, D. Y. (2006). Pb2+ impairs GABAergic synaptic transmission in rat hippocampal slices: A possible involvement of presynaptic calcium channels. Brain Research, 1088, 93–100.
Xu, S., & Rajanna, B. (2006). Glutamic acid reverses Pb2+-induced reductions of NMDA receptor subunits in vitro. Neurotoxicology, 27, 169–175.
Xu, S. Z., Bullock, L., Shan, C. J., Cornelius, K., & Rajanna, B. (2005). PKC isoforms were reduced by lead in the developing rat brain. International Journal of Developmental Neuroscience, 23(1), 53–64.
Xu, J., Yan, C. H., Yang, B., Xie, H. F., Zou, X. Y., Zhong, L., Gao, Y., Tian, Y., & Shen, X. M. (2009a). The role of metabotropic glutamate receptor 5 in developmental lead neurotoxicity. Toxicology Letters, 191(2–3), 223–230.
Xu, J., Zhu, Y., Contractor, A., & Heinemann, S. F. (2009b). mGluR5 has a critical role in inhibitory learning. The Journal of Neuroscience, 29, 3676–3684.
Xy, Z., Liu, A. P., Ruan, D. Y., & Liu, J. (2002). Effect of developmental lead exposure on the expression of specific NMDA receptor subunit mRNAs in the hippocampus of neonatal rats by digoxigenin-labeled in situ hybridization histochemistry. Neurotoxicology and Teratology, 24, 149–160.
Yamashita, T., Inui, S., Maeda, K., Hua, D. R., Takagi, K., Fukunaga, K., & Sskaguchi, N. (2006). Regulation of CamKII by alpha4/PP2Ac contributes to learning and memory. Brain Research, 1082(1), 1–10.
Zalutsky, R. A., & Nicoll, R. A. (1990). Comparison of two forms of long-term potentiation in single hippocampal neurons. Science, 248, 1619–1624.
Zhang, W., Shen, H., Blaner, W. S., Zhao, Q., Ren, X., & Graziano, J. H. (1996). Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: The role of the choroid plexus. Toxicology and Applied Pharmacology, 139(2), 445–450.
Zhang, X. Y., Liu, A. P., Ruan, D. Y., & Liu, J. (2002). Effect of developmental lead exposure on the expression of specific NMDA receptor subunit mRNAs in the hippocampus of neonatal rats by digoxigenin-labeled in situ hybridization histochemistry. Neurotoxicology and Teratology, 24(2), 149–160.
Zukin, R. S., & Bennett, M. V. (1995). Alternatively spliced isoforms of the NMDARI receptor subunit. Trends in Neurosciences, 18, 306–313.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this entry
Cite this entry
Rahman, A. (2014). Lead and Excitotoxicity. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_142
Download citation
DOI: https://doi.org/10.1007/978-1-4614-5836-4_142
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-5835-7
Online ISBN: 978-1-4614-5836-4
eBook Packages: Biomedical and Life SciencesReference Module Biomedical and Life Sciences