Skip to main content

Green Infrastructure and Climate Change

  • Reference work entry
Book cover Sustainable Built Environments

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Adaptation (with respect to climate change):

The adjusting of systems, natural or human, in response to actual or expected impacts of climate change, such as sea level rise, to reduce vulnerability or increase resilience in response to observed or expected changes in climate and associated extreme events [1, p. 869]. A distinction has been made between planned adaptation (e.g., urban planning), which is the focus of this chapter, and autonomous adaptation (e.g., by individual action such as improving housing insulation, installing air-conditioning, etc.) [2].

Ecosystem services:

Are “the benefits people obtain from ecosystems” [3]. “These include provisioning services such as food, water, timber, and fiber; regulating services that affect climate, floods, disease, wastes, and water quality; cultural services that provide recreational, aesthetic, and spiritual benefits; and supporting services such as soil formation, photosynthesis, and nutrient cycling” (3, Preface: V). In urban areas, ecosystem services are clearly related to land use and land cover. Therefore, spatial planning and regulations that influence the spatial pattern and intensity of land use, and in particular the provision and quality of green spaces, can have huge implications for the ecology of cities [4, 5].

Evapotranspiration:

The sum of evaporation of water from surfaces and the transpiration of water by plants and animals. According to US Geological Survey [6], transpiration from plants accounts for approximately 10% of air moisture. A large oak has been estimated to transpire up to 151,000 l water per year. This would account for more than 400 l/day. More modest figures are given by other sources, for example, 200 l per day for a single, fully grown beech [7]. However, generally, these figures need to be considered with great caution as they are based on rough estimates and will greatly vary between trees depending on stand and site conditions, tree condition, as well as climatic conditions.

Green infrastructure:

The term “Green infrastructure” was first introduced in the USA at the end of the 1990s – it has been defined as an “interconnected network of protected land and water that supports native species, maintains natural ecological processes, sustains air and water resources and contributes to the health and quality of life for America’s communities and people” [8]. “Urban green infrastructure” is the network of green areas in cities. The term makes reference to other types of urban infrastructures (e.g., the road system). This interpretation of green infrastructure relates to a fine-scale urban application where hybrid infrastructures of green spaces and built systems are planned and designed to support multiple ecosystem services. It has been argued that planning of an urban green infrastructure should promote multifunctionality and connectivity of urban green space. It can integrate both public and private green space. It should be based on a long-term vision and a communicative and socially inclusive approach to its planning and management [9, 10].

Mitigation (with respect to climate change):

Reducing greenhouse gas emissions and enhancing sinks.

Resilience:

Is the ability of a system to adapt and adjust to changing internal or external processes [11, 12]. Resilience is the flip side of vulnerability – a resilient system or population is not sensitive to climate variability and change and has the capacity to adapt [13].

Sustainable urban drainage systems:

Sequence of management practices utilizing urban green areas for storage, infiltration, evaporation, and conveyance of stormwater runoff.

Urban heat-island effect:

Significantly higher temperatures experienced in cities compared to the rural surroundings as a result of changed solar reflection in the built environment, less evapotranspiration, and anthropogenic heat from combustion engines, heating of buildings, and other use of energy.

Vulnerability (with respect to climate change):

Is the degree to which a system is susceptible to, and unable to cope with, adverse effects of climate change, including climate variability and extremes. Vulnerability is a function of the character, magnitude, and rate of climate change and variation to which a system is exposed, its sensitivity, and its adaptive capacity [1, p. 883].

Bibliography

Primary Literature

  1. IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change [Core Writing Team, Pachauri RK, Reisinger A (eds)]. IPCC, Geneva, Switzerland, p 104

    Google Scholar 

  2. Parry M, Carter T (1998) Climate impact and adaptation assessment. Earthscan, London

    Google Scholar 

  3. MEA (Millenium Ecosystem Assessment) (2005) Ecosystems and human well-being: synthesis. Island, London. http://www.millenniumassessment.org/documents/document.356.aspx.pdf. Accessed 4 Nov 2010

  4. Alberti M (2008) Advances in urban ecology. Springer, New York

    Google Scholar 

  5. Pauleit S, Breuste JH (2011) Land use and surface cover as urban ecological indicators. In: Niemelä J (ed) Handbook of urban ecology. Oxford University Press, Oxford, pp 19–30

    Google Scholar 

  6. US Geological Survey (2010) The water cycle: evapotranspiration. http://ga.water.usgs.gov/edu/watercycleevapotranspiration.html. Accessed 6 May 2010

  7. Lyr H, Fiedler H-J, Tranquilini W (1992) Physiologie und Ökologie der Gehölze. G. Fischer Verlag, Jena & Stuttgart

    Google Scholar 

  8. Benedict MA, McMahon ET (2006) Green infrastructure: linking landscapes and communities. Island, Washington, DC

    Google Scholar 

  9. Ahern J (2007) Green infrastructure for cities: the spatial dimension. In: Brown P, Novotny V (eds) Cities of the future: towards integrated sustainable water and landscape management. IWA Publishers, London, pp 267–283

    Google Scholar 

  10. Pauleit S, Liu L, Ahern J, Kazmierczak A (2011) Multifunctional green infrastructure planning to promote ecological services in the city. In: Niemelä J (ed) Handbook of urban ecology. Oxford University Press, Oxford, pp 272–285

    Google Scholar 

  11. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Google Scholar 

  12. Gunderson LH, Holling CS, Light SS (1995) Barriers broken and bridges built: a synthesis. In: Gunderson LH (ed) Barriers and bridges to the renewal of ecosystems and institutions. Columbia University Press, New York, pp 489–532

    Google Scholar 

  13. IPCC (Intergovernmental Panel on Climate Change) (2001) Climate change 2001. Overview of impacts, adaptation, and vulnerability to climate change. Working group II contribution to the third assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, p 89

    Google Scholar 

  14. United Nations (2008) World urbanization prospects: the 2007 revision. United Nations Department of Economic and Social Affairs/Population Division, New York

    Google Scholar 

  15. Angel S, Sheppard SC, Civco DL (2005) The dynamics of global urban expansion. Transport and urban development department. The World Bank, Washington, DC

    Google Scholar 

  16. O’Meara M (1999) Reinventing cities for people and the planet, Worldwatch Paper, 147. Worldwatch Institute, Washington, DC, p 94

    Google Scholar 

  17. Oke TR (1997) Urban climates and global change. In: Perry A, Thompson R (eds) Applied climatology: principles and practice. Routledge, London, pp 273–287

    Google Scholar 

  18. Satterthwaite D (2008) Cities’ contribution to global warming: notes on the allocation of greenhouse gas emissions. Environment and Urbanization 20:539–549

    Google Scholar 

  19. Hunt A, Watkiss P (2007) Literature review on climate change impacts on urban city centres: initial findings. OECD Working Paper ENV/EPOC/GSP(2007)10/FINAL. http://www.oecd.org/dataoecd/52/50/39760257.pdf. Accessed 31 May 2010

  20. Blanco H, Alberti M (2009) Building capacity to adapt to climate change through planning. In: Blanco H, Alberti M, Forsyth A, Krizek KJ, Rodrıguez DA, Talen E, Ellis C (eds) Hot, congested, crowded and diverse: emerging research agendas in planning. Prog Plan 71:158–169

    Google Scholar 

  21. Newman P, Kenworthy JR (1989) Sustainability and cities: overcoming automobile dependence. Island, Washington, DC

    Google Scholar 

  22. EEA (European Environment Agency) (2006) Urban sprawl in Europe. The ignored challenge. EEA Report No 10/2006. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  23. Nilsson K, Nielsen TS, Pauleit S (2008) Integrated European research on sustainable development and peri-urban landuse relationships. Urbanistica 138:106–109

    Google Scholar 

  24. Haase D (2011) Processes and impacts of urban shrinkage and response by planning. In: Encyclopedia of sustainability science and technology. Springer, Berlin

    Google Scholar 

  25. Wilby RL (2007) A review of climate change impacts on the built environment. Built Environ 33(1):31–45

    Google Scholar 

  26. Crichton D (2001) The implications of climate change for the insurance industry – an update and outlook to 2020. BRE, Watford

    Google Scholar 

  27. SoU (Swedish Commission on Climate and Vulnerability) (2007) Sweden facing climate change – threats and opportunities. Swedish Government Official Reports SOU 2007:60. Swedish Commission on Climate and Vulnerability, Stockholm

    Google Scholar 

  28. EEA (European Environment Agency) (2008) Impacts of Europe’s changing climate – 2008 indicator-based assessment. EEA Report No 4/2008. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  29. McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization 19(1):17–37

    Google Scholar 

  30. O’Brien K, Eriksen S, Sygna L, Nygaard L (2007) Why different interpretations of vulnerability matter in climate change discourses. Clim Policy 7:73–88

    Google Scholar 

  31. Kelly PM, Adger WN (2000) Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Clim Change 47:325–352

    Google Scholar 

  32. Bridgeman H, Warner R, Dodson J (1995) Urban biophysical environments. Oxford University Press, Oxford

    Google Scholar 

  33. Lindley SJ, Handley JF, Theuray N, Peet E, Mcevoy D (2006) Adaptation strategies for climate change in the urban environment: assessing climate change related risk in UK urban areas. J Risk Res 9(5):543–568

    Google Scholar 

  34. O’Brien K, Sygna L, Haugen JE (2004) Vulnerable or resilient a multi-scale assessment of climate impacts and vulnerability in Norway. Clim Change 64:193–225

    Google Scholar 

  35. Mehrotra S, Natenzon CE, Omojola A, Folorunsho R, Gilbride J, Rosenzweig C (2009) Framework for city climate risk assessment. In: Fifth urban research symposium 2009, Marseille, June 28–30, 2009. http://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1256566800920/6505269-1268260567624/Rosenzweig.pdf. Accessed 31 May 2010

  36. Blanco H, Alberti M, Forsyth A, Krizek KJ, Rodrıguez DA, Talen E, Ellis C (2009) Hot, congested, crowded and diverse: emerging research agendas in planning. Prog Plan 71:153–205

    Google Scholar 

  37. Chiesura A (2004) The role of urban parks for the sustainable city. Landscape Urban Plan 68:129–138

    Google Scholar 

  38. Tyrväinen L, Pauleit S, Seeland K, de Vries S (2005) Benefits and uses of urban forests and trees: a European perspective. In: Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J (eds) Urban forests and trees in Europe – a reference book. Springer, Berlin, pp 81–114

    Google Scholar 

  39. Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kazmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using green infrastructure: a literature review. Landscape Urban Plan 81(3):167–178

    Google Scholar 

  40. Whitford V, Ennos AR, Handley JF (2001) “City form and natural process” – indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landscape Urban Plan 57(2):91–103

    Google Scholar 

  41. Gartland L (2008) Heat islands. Understanding and mitigating heat islands in urban areas. Earthscan, London

    Google Scholar 

  42. Nowak DJ (2002) The effects of urban forests on the physical environment. In: Randrup TB, Konijnendijk CC, Christophersen T, Nilsson K (eds) COST action E12 urban forests and urban trees. Proceedings No. 1. Office for Official Publications of the European Communities, Luxembourg, pp 22–42

    Google Scholar 

  43. Girardet H (2004) Cities people planet: liveable cities for a sustainable world. Wiley, Chichester

    Google Scholar 

  44. Landsberg HE (1981) The urban climate. Academic, New York

    Google Scholar 

  45. Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London, New York

    Google Scholar 

  46. Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70(3):295–310

    Google Scholar 

  47. Robine JM, Cheung SL, Le Roy S, Van Oyen H, Herrmann SR (2008) Report on excess mortality in Europe during summer 2003. EU Community Action Programme for Public Health, Grant Agreement 2005114. http://ec.europa.eu/health/ph_projects/2005/action1/docs/action1_2005_a2_15_en.pdf. Accessed 27 Jan 10

  48. USEPA (United States Environmental Protection Agency) (2001) Inside the greenhouse: a state and local resource on global warming. USEPA (United States Environmental Protection Agency), Washington, DC

    Google Scholar 

  49. Robel F, Hoffmann U, Riekert A (1978) Daten und Aussagen zum Stadtklima von Stuttgart auf der Grundlage der InfrarotThermographie. Beiträge zur Stadtentwicklung Nr. 15. Landeshauptstadt Stuttgart

    Google Scholar 

  50. Taha H (1997) Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build 25(2):99–103

    MathSciNet  Google Scholar 

  51. von Stülpnagel A (1987) Klimatische Veränderungen in Ballungsgebieten unter besonderer Berücksichtigung der Ausgleichswirkung von Grünflächen, dargestellt am Beispiel von Berlin (West). Unpublished PhD thesis, TU Berlin, Berlin

    Google Scholar 

  52. Eliasson I, Upmanis H (2000) Nocturnal air flow from urban parks – implications for city ventilation. Theor Appl Climatol 66:95–107

    Google Scholar 

  53. Handley J (2006) Adaptation strategies for climate change in the urban environment (ASCCUE). In: Walsh CL, Hall JW, Street RB, Blanksby J, Cassar M, Ekins P, Glendinning S, Goodess CM, Handley J, Noland R, Watson SJ (eds) Building knowledge for a changing climate: collaborative research to understand and adapt to the impacts of climate change on infrastructure, the built environment and utilities. Newcastle University, March 2007, pp 44–53. http://www.ukcip.org.uk/images/stories/Pub_pdfs/BKCC-Results.pdf. Accessed 11 April 2010

  54. Gill S, Handley J, Ennos R, Pauleit S (2007) Adapting cities for climate change: the role of the green infrastructure. Built Environ 30(1):97–115

    Google Scholar 

  55. Gill S, Handley J, Pauleit S, Ennos R, Theuray N, Lindley S (2008) Characterising the urban environment of UK cities and towns: a template for landscape planning in a changing climate. Landscape Urban Plan 87:210–222

    Google Scholar 

  56. Matzarakis A, Mayer H, Iziomon M (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84

    Google Scholar 

  57. Dousset B, Gourmelon F, Laaidi K, Zeghnoun A, Giraudet E, Bretin P, Vandentorren S (2009) Satellite monitoring of summertime heat waves in the Paris metropolitan area. In: The seventh international conference on urban climate, 29 June – 3 July 2009, Yokohama, Japan. http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/384388-1-090518140731-002.pdf. Accessed 31 May 2010

  58. BETWIXT (2005) Built EnviromenT: weather scenarios for investigation of impacts and eXTremes. Daily time-series output and figures from the CRU weather generator [online]. http://www.cru.uea.ac.uk/cru/projects/betwixt/cruwg_daily/. Accessed 30 June 2008

  59. Watts M, Goodess CM, Jones PD (2004) The CRU daily weather generator. Climatic Research Unit, University of East Anglia, Norwich

    Google Scholar 

  60. Burkhardt I, Dietrich R, Hoffmann H, Leschnar J, Lohmann K, Schoder F, Schultz A (2008) Urbane Wälder. Bundesamt für Naturschutz (eds), Naturschutz und Biologische Vielfalt, 63. Bonn-Bad Godesberg, pp 214

    Google Scholar 

  61. Pauleit S, Golding Y, Ennos R (2005) Modeling the environmental impacts of urban land use and land cover change – a study in Merseyside, UK. Landscape Urban Plan 71(2–4):295–310

    Google Scholar 

  62. Perry T, Nawaz R (2008) An investigation into the extent and impacts of hard surfacing of domestic gardens in an area of Leeds, United Kingdom. Landscape Urban Plan 86:1–13

    Google Scholar 

  63. Madsen H, Arnbjerg-Nielsen K, Mikkelsen PS (2009) Update of regional intensity–duration–frequency curves in Denmark: tendency towards increased storm intensities. Atmos Res 92(3):343–349

    Google Scholar 

  64. DMI (Danish Meteorological Institute) (2007) Klimaet i Danmark i 2100 i forhold til 1990 for A2- og B2-scenarierne. http://www.dmi.dk/dmi/index/klima/fremtidens_klima-2/aendringer_i_danmark.htm. Accessed 11 April 2010 (in Danish)

  65. Arnbjerg-Nielsen K (2008) Forventede ændringer i ekstremregn som følge af klimaændringer. Spildevandskomiteen, Skrift nr. 29, IDA Spildevandskomiteen, Danish Society of Engineers, Copenhagen (in Danish)

    Google Scholar 

  66. Rambøll (2008) Kommunernes investeringsbehov i forbindelse med klimatilpasning og veje. Local Government Denmark, Copenhagen. http://www.ramboll-management.dk/news/~/media/Images/RM/RM%20DK%20and%20RM%20Group/PDF/Publications/2009/KommunernesInvesteringsbehovIforbindelseMedKlimatilpasningOgVeje.ashx. Accessed 11 April 2010 (in Danish)

  67. Butler D, Parkinson J (1997) Towards sustainable urban drainage. Water Sci Technol 35(9):53–63

    Google Scholar 

  68. Chocat B, Ashley R, Marsalek J, Matos MR, Rauch W, Schilling W, Urbonas B (2007) Toward the sustainable management of urban storm-water. Indoor Built Environ 16(3):273–285

    Google Scholar 

  69. Marsalek J, Chocat B (2002) International report: stormwater management. Water Sci Technol 46(6–7):1–17

    Google Scholar 

  70. Coombes PJ, Argue JR, Kuczera G (2000) Figtree place: a case study in water sensitive urban development (WSUD). Urban Water 1(4):335–343

    Google Scholar 

  71. Wong THF (2006) An overview of water sensitive urban design practices in Australia. Water Pract Technol 1(1)

    Google Scholar 

  72. Geiger WF, Dreiseitl H (1995) Neue Wege für das Regenwasser. R. Oldenbourg Verlag, Munich

    Google Scholar 

  73. Beenen T, Boogaard FC (2007) Lessons from 10 years storm water infiltration in the Dutch Delta. In: Proceedings of the 6th international conference on sustainable techniques and strategies in urban water management, Novatech 2007, June 25–28 2007, Lyon, pp 1139–1146

    Google Scholar 

  74. Scholz M (2006) Best management practice: a sustainable urban drainage system management case study. Water Int 31(3):310–319

    MathSciNet  Google Scholar 

  75. Stahre P (2006) Sustainability in urban storm drainage: planning and examples. Svenskt Vatten, Stockholm

    Google Scholar 

  76. Bengtsson L (2002) Avrinning från gröna tak (runoff from greenroofs). Vatten 58:245–250

    Google Scholar 

  77. Villarreal EL, Semadeni-Davies A, Bengtsson L (2004) Inner city stormwater control using a combination of best management practices. Ecol Eng 22:279–298

    Google Scholar 

  78. Beneke G (2003) Regenwasser in Stadt und Landschaft – Vom Stückwerk zur Raumentwicklung – Plädoyer für eine Umorientierung. Beiträge zur Rümlichen Planung – Schriftenreihe des Fachbereichs Landschaftsarchitektur und Umweltentwicklung der Universität Hannover Heft 70

    Google Scholar 

  79. Fryd O, Backhaus A, Jeppesen J, Ingvertsen ST, Birch H, Bergman M, Petersen TEP, Fratini C (2009) Koblede afkoblinger. http://www.2bg.dk/Internal_Workshop/2009-12-03-KE/2BG_HarrestrupAa_Booklet_web.pdf. Accessed 11 April 2010 (in Danish)

  80. Turenscape (2004) Yongning river park, Taizhou city. http://www.turenscape.com/English/projects/projectphp?id=323. Accessed 6 June 2010

  81. Stokman A, von Seggern H, Rabe S, Schmidt A, Werne J, Zeller S (2008) Wasseratlas: Wasserland-Topologien für die Hamburger Elbinsel. Jovis Verlag, Berlin

    Google Scholar 

  82. Mathur A, da Cunha D (2009) SOAK – Mumbai in an estuary. Rupa, New Delhi

    Google Scholar 

  83. van Nieuwenhuijze L (2006) (Hoog)water als uitdaging Meervoudig gebruik van de dijk en het buitendijkse gebied: wie durft? Report developed by H + N + S Landscape Architects, Utrecht. (in Dutch). http://www.hns-land.nl/images/stories/Publicaties/hoogwaterstrategie72dpi.pdf. Accessed 6 June 2010

  84. Dreiseitl H (2009) Bishan park, Singapore. http://www.dreiseitl.net/index.php?id= 525&lang = en&choice = 58&ansicht = text. Accessed 05 June 2010

  85. Mathur A, de Cunha D (2001) Mississippi floods: designing a shifting landscape. Yale University Press, New Haven

    Google Scholar 

  86. City of Los Angeles (2007) Los Angeles river revitalization master plan. http://www.lariverrmp.org/CommunityOutreach/masterplan_download.htm. Accessed 11 April 2010

  87. Rinaldi BM (2007) Landscapes of metropolitan hedonism. The cheonggyecheon linear park in Seoul. J Landscape Archit 2007:60–73

    Google Scholar 

  88. Nyhuus S (2005) Oslo. In: Werquin AC, Duhem B, Lindholm G, Oppermann B, Pauleit S, Tjallingii S (eds) Green structure and urban planning. Final report. COST Action C11, European Commission, Brussels, pp 184–191. http://www.greenstructureplanning.eu/COSTC11-book/. Accessed 11 April 2010

  89. Attwell K (2005) Green planning as a prerequisite for urban development in Aarhus, Denmark. In: Werquin AC, Duhem B, Lindholm G, Oppermann B, Pauleit S, Tjallingii S (eds) Green structure and urban planning. Final report. COST Action C11, European Commission, Brussels, pp 345–351. http://www.greenstructureplanning.eu/COSTC11-book/. Accessed 11 April 2010

  90. Oppermann B (2005) Redesign of the river Isar in Munich, Germany. Getting coherent quality for green structures through competitive process design? In: Werquin AC, Duhem B, Lindholm G, Oppermann B, Pauleit S, Tjallingii S (eds) Green structure and urban planning. Final report. COST Action C11, European Commission, Brussels, pp 372–378. http://www.greenstructureplanning.eu/COSTC11-book/. Accessed 11 April 2010

  91. City of Melbourne (2009) Zero net emissions by 2020 – update 2008. http://www.melbourne.vic.gov.au/Environment/WhatCouncilisDoing/Documents/zero_net_emissions_2020.pdf. Accessed 11 April 2010

  92. Kågeson P (2005) Reducing CO2 emissions from new cars. European federation for transport and environment, Brussels, p 10. http://www.gronabilister.se/grafik/dynamiskapdf/20050124210807.pdf. Accessed 11 April 2010

  93. New York City (2010) Million trees NYC. New York City Department of Parks & Recreation and New York Restoration Project. http://www.milliontreesnyc.org/html/urban_forest/urban_forest_benefits.shtml. Accessed 11 April 2010

  94. Morse SC (1978) Trees in the town environment. J Arboric 4:1–6

    Google Scholar 

  95. Foster R, Blaine J (1978) Urban trees survival: trees in the side-walk. J Arboric 4:14–17

    Google Scholar 

  96. Pauleit S, Jones N, Garcia-Marin G, Garcia-Valdecantos J-L, Rivière LM, Vidal-Beaudet L, Bodson M, Randrup TB (2002) Tree establishment practice in towns and cities – results from a European survey. Urban Forestry and Urban Greening 1(2):83–96

    Google Scholar 

  97. Bradshaw A, Hunt B, Walmsley T (1995) Trees in the urban landscape. Principles and Practice, Spon, London

    Google Scholar 

  98. Nowak DJ, Stevens JC, Sisinni SM, Luley CJ (2002) Effects of urban tree management and species selection on atmospheric carbon dioxide. J Arboric 28(3):113–122

    Google Scholar 

  99. Heisler G (1986) Energy savings with trees. J Arboric 12(5):113–125

    Google Scholar 

  100. Huang J, Ritschard R, Sampson N, Taha H (1992) The benefits of urban trees. In: Akbari H, Davis S, Dorsano S, Huang J, Winnett S (eds) Cooling our communities. US Environmental Protection Agency, Washington, DC, pp 27–42

    Google Scholar 

  101. Jo HK, McPherson EG (2001) Indirect carbon reduction by residential vegetation and planting strategies in Chicago, USA. J Environ Manage 61:165–177

    Google Scholar 

  102. Akbari H, Kurn DM, Bretz SE, Hanford JW (1997) Peak power and cooling energy savings of shade trees. Energy Build 25:139–148

    Google Scholar 

  103. Santamouris M, Pavloua C, Doukasa P, Mihalakakoub G, Synnefaa A, Hatzibirosa A, Patargias P (2007) Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece. Energy 32(9):1781–1788

    Google Scholar 

  104. Saiz S, Kennedy C, Bass B, Pressnail K (2006) Comparative life cycle assessment of standard and green roofs. Environ Sci Technol 40:4312–4316

    Google Scholar 

  105. Brown DE, Fox M, Pelletier MR (eds) (2001) Sustainable architecture white papers. Earth Pledge Foundation, New York

    Google Scholar 

  106. Jodidio P (2009) Green architecture now! Taschen, Cologne

    Google Scholar 

  107. Wilby RL, Perry GLW (2006) Climate change, biodiversity and the urban environment: a critical review based on London, UK. Prog Phys Geogr 30(1):73–98

    Google Scholar 

  108. Sauerwein M (2011) Urban soils – characterization, pollution and relevance in urban ecosystems. In: Niemelä J (ed) Handbook of urban ecology. Oxford University Press, Oxford, pp 45–58

    Google Scholar 

  109. Bühler O, Nielsen CN, Kristoffersen P (2006) Growth and phenology of established Tilia cordata street trees in response to different irrigation regimes. Arboriculture & Urban Forestry 32(1):3–9

    Google Scholar 

  110. Roloff A, Korn S, Gillner S (2009) The climate-species-matrix to select tree species for urban habitats considering climate change. Urban Forestry and Urban Greening 8:295–308

    Google Scholar 

  111. Alvem B-M, Bennerscheidt C (2009) Baumstandortoptimierung und Regenwasserbewirtschaftung – Chancen für ein gemeinsames Vorgehen. In: Dujesiefken D (ed) Jahrbuch der Baumpflege 2009. Taspo Fachbuchservice, Braunschweig, pp 70–78

    Google Scholar 

  112. James P, Tzoulas K, Adams MD, Annett P, Barber A, Box J, Breuste J, Cooper I, Curwell SR, Elmqvist T, Flood T, Frith M, Gledhill DG, Goode D, Gordon C, Greening KL, Handley J, Harding S, Haworth S, Hesketh F, Home R, Johnston M, Kazmierczak AE, Korpela K, Leeks G, Leeks G, Morley E, Nail S, Niemelä J, Moretti M, Stein N, Pauleit S, Powell JA, Radford KG, Richardson D, Roe MH, Sadler JP, Selman P, Scott AV, Snep R, Stern N, Timmermans W, Ward-Thompson C (2009) Urban green – towards an integrated understanding of greenspace in the built environment. Urban Forestry and Urban Greening 8(2):65–76

    Google Scholar 

  113. Brown RR, Farrelly MA (2009) Challenges ahead – social and institutional factors influencing sustainable urban stormwater management in Australia. Water Sci Technol 59(4):653–660

    Google Scholar 

  114. van der Brugge R (2009) Transition dynamics in social-ecological systems: the case of Dutch water management. PhD thesis, Erasmus University, Rotterdam

    Google Scholar 

  115. Roy AE, Wenger SJ, Fletcher TD, Walsh CJ, Ladson AR, Shuster WD, Thurston HW, Brown RR (2008) Impediments and solutions to sustainable, watershed-scale urban stormwater management: lessons from Australia and the United States. Environ Manage 42(2):344–359

    Google Scholar 

  116. Handley J (2007) Planning for climate change. Unpubl. Presentation given at the “Future of Cities” 51st international federation for housing programmes (IFHP), World Congress, Copenhagen, Sept 22–26 2007

    Google Scholar 

  117. CEC (Commission of the European Communities) (2007) Green paper on adapting to climate change in Europe – options for EU action. Brussels, 29.6.2007. COM(2007) 354 final

    Google Scholar 

  118. Voogt JA (2004) Urban heat islands: hotter cities. ActionBioscience.org, American Institute of Biological Sciences. http://www.actionbioscience.org/environment/voogt.html. Accessed 07 May 2010

  119. Sieker F (Hrsg) (1998) Naturnahe Regenwasserbewirtschaftung, Reihe Stadtökologie, Bd. 1, Analytica Verlagsgesellschaft, Berlin

    Google Scholar 

  120. Gill S (2006) Climate change and urban greenspace. Unpublished PhD thesis, School of Environment and Development, University of Manchester, Manchester

    Google Scholar 

Books and Reviews

  • Akbari H, Davis S, Dorsano S, Huang J, Winnett S (eds) (1992) Cooling our communities – a guidebook on tree planting and light-colored painting. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Woods-Ballard B, Kellagher R, Martin P, Jefferies C, Bray R, Shaffer P, Kellagher R (2007) The SUDS manual (C697). Construction Industry Research & Information Association (CIRIA), London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Pauleit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Pauleit, S., Fryd, O., Backhaus, A., Jensen, M.B. (2013). Green Infrastructure and Climate Change . In: Loftness, V., Haase, D. (eds) Sustainable Built Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5828-9_212

Download citation

Publish with us

Policies and ethics