Skip to main content

Daylighting Controls , Performance and Global Impacts

  • Reference work entry
Book cover Sustainable Built Environments

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Brightness contrast/glare:

Risks of glare in daylighting

  • Direct glare: sun is in user’s immediate field of vision

  • Background glare: brightness contrast between monitor and monitor background

  • Reflected glare: mirroring effect on monitor surface

Daylight autonomy:

Daylight autonomy of a workplace is the percentage of normal working time without the requirement of electric lighting – i.e., the time in which the target illuminance can be maintained by daylight alone. This varies depending on the minimum illuminance required and is determined using daylight coefficient.

Direct/diffuse light:

Diffuse light illuminates a room or area contrast or shadow reduced. It is usually caused by extensive light sources like the overcast sky (5,000–20,000 cd/m2). In contrast the clear sky has a luminance of up to 50,000 cd/m2 which is caused by the high illuminance of the direct sun (100,000 lx).

Efficiency of daylight:

Depending on the type of building, 20–40% of its total energy requirement is used merely for electric lighting, primarily during the day. Using optimized daylight redirection systems, electric lighting demands can be reduced to less than 10% of total energy loads.

Heat gain from daylight versus electric light:

Outside, daylight produces up to 120 lm/W of energy. Inside – behind glass with controlled solar heat gain coefficients (SHGC) – daylight offers even greater 240 lm/W. Fluorescent luminaires, on the other hand, can only achieve approximately 70 lm/W, requiring much higher energy use per unit of lighting provided. As a result, the heat gain in buildings using daylight is less than 1/3 of the heat generated by electric lighting, a gain taken into account in the energy balance of a building through the SHGC value.

Illuminance (lux/lumen/candela):

Basic terms of lighting technology are:

  • Illuminance E [lx]. The total luminous flux incident on a surface per illuminated surface area

  • Luminous flux Φ [lm]. The radiated power emitted by a light source or the radiated power incidence on a surface

  • Luminous intensity I [cd]. The directional luminous flux of a light source

Light distribution curves (LDC):

Light distribution curves of daylight systems indicate the direction and the intensity of the light distribution. Given the sun’s changing angles of incidence outside, factors to be considered in mapping the light distribution inside include light redirection elements and the potential for adjusted tilt angles to ensure freedom from glare.

Quality assurance for daylight control:

Quality assurance must ensure the simultaneity of three criteria:

  • Reduction of solar irradiation in summer (Fc value) for passive cooling balanced by solar gain in winter

  • Sufficient daylight supply on the task surfaces (daylight coefficient)/visual comfort

  • Sufficient visual transmission for quality views

Conventional louvers are generally closed to protect against glare and overheating. This not only hinders the view outside, but also prevents sufficient daylight from coming in. Design for daylight, including light redirecting louvers, ensures simultaneity of all three qualities.

Reflectors – contoured prismatic, mirror and diffusing blinds:

Basic functions of mirror or prismatic light redirecting louvers include reflection of the light back to its source to protect against overheating (thermal comfort) and/or redirection of daylight into the space to improve the illumination in the room (visual comfort). Precise contours make it possible to calculate exactly the quantitative light distribution (both inside and outside) with reference to the louvers’ tilt angle and the altitude of the sun. Mono-reflective light control refers to the redirection of light inside and its deflection back outside in a single reflection in order to minimize its absorption by the blinds and any resulting heat development. Mono-reflective light control is required to prevent undirected reflection of the rays back and forth between louvers to prevent unplanned light scattering or absorption.

Shading for passive cooling balanced by passive solar heating:

Shading is a critical protective function against overheating to avoid active cooling, achieved exclusively through reflection of solar irradiation. At the same time, “passive solar heating” relies on solar transparency to achieve high levels of solar gain to reduce mechanical heating requirements. To avoid the risk of overheating in summer, it is critical to provide seasonally or daily dynamic devices that balance light and heat gain.

Total solar energy transmission (g/SHGC):

Total solar energy transmission through the glazed area (g-value, SHGC) defines the heat load resulting from solar irradiation, light transmission, and secondary heat radiation (g = τverg + qi). Design decisions include the total energy transmission for the window assembly and its interior and exterior layers that form an overall system including sun and light control. The Fc value for the system indicates the percentage by which the total energy transmission through the glazing is reduced through redirection of the light: Fc = gtot/gglazing.

Bibliography

Primary Literature

  1. 2008: Verordnung über Arbeitsstätten (Arbeitsstättenverordnung – ArbStättV), BGBl. I S. 2768

    Google Scholar 

  2. Arasteh D, Johnson R, Selkowitz S (1986) Definition and use of a daylight “Coolness” Index. In: International Daylighting Conference, Long Beach, 5–7 Nov 1986

    Google Scholar 

  3. ASR 7/1 Sichtverbindung nach außen; ASR 7/3 Künstliche Beleuchtung; ASR 7/4 Sicherheitsbeleuchtung

    Google Scholar 

  4. Cakir A, Cakir G (1994) Lixht und Gesundheit. Eine Untersuchung zum Stand der Beleuchtungstechnik in deutschen Büros. ERGONOMIC Institut für Arbeits- und Sozialforschung Forschungsgesellschaft mbH, Berlin

    Google Scholar 

  5. Deutscher Wetterdienst, Offenbach (2010) URL: http://www.dwd.de (Stand 09.04.2010). Accessed 9 Dec 2011

  6. DIN 4108–2: Wärmeschutz und Energie-Einsparung in Gebäuden. Teil 2: Mindestanforderungen an den Wärmeschutz. Ausgabe: Juli 2003 DIN EN 13363: Sonnenschutzeinrichtungen in Kombination mit Verglasungen – Berechnung der Solarstrahlung und des Lichttransmissionsgrades. Ausgabe September 2007

    Google Scholar 

  7. DIN EN 13363–1: 2003 + A1:2007 (2003/2005/2007) Solar protection devices combined with glazing – Calculation of solar and light transmittance – Part 1: Simplified method. DIN EN 13363–2:2005 Solar protection devices combined with glazing – Calculation of total energy transmittance and light transmittance – Part 2: Detailed calculation method

    Google Scholar 

  8. Energy Policy Division of the Washington State Energy Office (Hg.): Washington State Energy Use Profile, Commercial Sector. URL: http://www.commerce.wa.gov/energy/archive/FILES/PRFL/docs/aboutweb.htm (Stand: 09.04.2010). Accessed 9 Dec 2011

  9. Franke H (ed) (2007) Handbuch für Beleuchtung. Ecomed, Landsberg

    Google Scholar 

  10. Further daylight publications

    Google Scholar 

  11. Prof. Dr.-Ing. Dr. h.c. Hartkopf V (2009) Transnational endowment for sustainable built environments (TESBE). In: Green Building Conference, Carnegie Mellon University, Pittsburgh, 9 Nov 2009

    Google Scholar 

  12. Prof. Dr. Kaase, Heinrich: Ga-Nr.: HK-KÖ2-01 (2001) Gutachten über die Bestimmung der lichttechnischen und strahlungsphysikalischen Kennzahlen von zwei Retro-Lamellen als Innenjalousie. Institut für Elektronik und Lichttechnik der Technischen Universität Berlin

    Google Scholar 

  13. Klammt S, Müller H, Neyer A (2009) Advanced daylighting using micro-structured components. TU Dortmund. In: Proceedings of PLDC, Berlin, 27–31 Oct 2009

    Google Scholar 

  14. Köster H (2004) Tageslichtdynamische Architektur – Grundlagen, Systeme, Projekte, 1st edn. Birkhäuser, Basel (published in German, English, Chinese and Czech)

    Google Scholar 

  15. Patents: see Appendix

    Google Scholar 

  16. Dr. Pfafferrott J, Kalz D (2007) Thermoaktive Bauteilsysteme, FIZ Karlsruhe GmbH (Hg.). URL: http://www.bine.info/fileadmin/content/Publikationen/Themen-Infos/I_2007/themen0107internetx.pdf. Accessed 6 Dec 2011

  17. Richtlinien VDI (2002) VDI 6011 Blatt 1: Optimierung von Tageslichtnutzung und künstlicher Beleuchtung – Grundlagen. Beuth, Berlin

    Google Scholar 

  18. Ruhstorfer W Computergrafik und Bildverarbeitung (1997) URL: http://www.uni-regensburg.de/EDV/Misc/CompGrafik/Script_5.html. Accessed 9 Dec 2011

  19. Saint Gobain Glass, Memento (2005)

    Google Scholar 

  20. Twarowski M (1962) Sonne und Architektur. Georg D. W Callway, München

    Google Scholar 

  21. Umweltbundesamt. Daten zur Umwelt (2011) URL: http://www.umweltbundesamt-daten-zur-umwelt.de/umweltdaten/public/theme.do?nodeIdent=3437 [Stand: 09.04.2010]. Accessed 9 Dec 2011

  22. SOLARTRAN Pty Ltd. URL: http://www.solartran.com.au/lasercutpanel.htm. Accessed 9 Dec 2011

  23. World Data Center for Meteorology, Asheville. URL: http://www.ncdc.noaa.gov/oa/wdc/index.php?name=climateoftheworld. Accessed 9 Dec 2011

Books and Reviews

  • Goldmann M (2010) Gelenkte Lichtblicke, Deutsches Architektenblatt, Ausgabe Hessen/Rheinland-Pfalz/Saarland 06/10, S.38–S.40

    Google Scholar 

  • Köster H (2010) Energiesparressource Tageslicht, Lichtlenkung. industrieBAU 56(2):S.36–S.41

    Google Scholar 

  • Köster H (2010) Energiesparressource tageslichtlenkende Fassaden. In: Innovative Fassadentechnik, A 61029. Ernst & Sohn, Berlin, S.51–S.56

    Google Scholar 

  • Köster H (2010) So sind Sie Ihrer Konkurrenz einen Schritt voraus, Diese Tipps von Köster Lichtplanung machen Sie zum Tageslichtexperten. Sicht + Sonnenschutz 9:S.16–S.19

    Google Scholar 

  • www.koester-lighting-design.de

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Köster Dipl.-Ing. .

Editor information

Editors and Affiliations

Appendix A. Daylight redirection-systems patents [excerpt]: Dr-Ing. Helmut Köster

Appendix A. Daylight redirection-systems patents [excerpt]: Dr-Ing. Helmut Köster

EP 0793 761

Stepped Lamella for guiding Light Radiation

DE P 69514 005.1-08

Stepped Lamella for guiding Light Radiation

CH EP 0 793 761

Stepped Lamella for guiding Light Radiation

IT (EP) 0 793 761

Stepped Lamella for guiding Light Radiation

Fr (EP) 0 793 761

Stepped Lamella for guiding Light Radiation

GB EP 0 793 761

Stepped Lamella for guiding Light Radiation

NL (EP) 0 793 761

Lamelles en Gradins Destinees au Guidage de Rayonnement Lumineux

AT EP E 187 800

Stepped Lamella for guiding Light Radiation

AU P 704 884

Stepped Lamella for guiding Light Radiation

CA P 2 205 560

Stepped Lamella for guiding Light Radiation

US 6,240,999

Stepped Lamella for guiding Light Radiation

EP 0461 137 B1

Lichtlenksystem für die Beleuchtung eines Innenraumes

DE P 590 09 101.8-08

Lichtlenksystem

US P 5 293 305

Light Guidance systems for the illumination of an interior area

USA 6,367,937

Sun Protection Installation.....

AT 411613

Sonnenschutzanlage mit Sonnenschutzlamellen.......

CH 694,947

Sonnenschutzanlage mit Sonnenschutzlamellen.......

NL 1010766

Zonwering met zonweringlamellen.....

GB 2332229

Sun Protection Installation.....

FR 9815482

Sun Protection Installation.....

IT - 1303650

Impianto di Protezione contra....

CA 2,255,302

Sun Protection Installation.....

AU 756628

Sun Protection Installation.....

AU 643429

Light deflecting system.....

DE 100 2006 006 855.6

Bewegliche Fixierung leiterartiger Bauelemente

DE 10 2005 028 6550

Medienfassade

DE 102 60 711

Blendfreie Jalousien

DE 100 18 451

Herstellung von linearen, prismatischen Strukturen auf einem lamellenartigen Festkörper

DE 198 28 543

Sonnenschutzanlage für Sonnenschutzlamellen, die eine gezahnte Oberseite aufweisen

DE 196 36 817

Sonnenschutzanlage mit Sonnen- schutzlamellen, die eine gezahnte Oberseite aufweisen

DE 44 42 870

Jalousielamelle zur präzisen Steuerung der direkten Sonneneinstrahlung

DE 000 331 483 -0001

Oberfläche für Jalousielamellem _ Oberfläche mirkostrukturiert, gezahnt

M9502488.3

Jalousie zur Tageslichtumlenkung

000 334 483 Alicante

selbst gefertigtes Lamellenprofil Retroflex

DE 401 04 706.7

Fassadenpfostenausbildung vorzugsweise für Glasfassaden mit und ohne Leuchte

DE 401 06 175.2

Lichtlenkdecken (1 Muster)

DE 401 09 455.3

Asymetrisch strahlendes Leuchtenmodul

DE 401 10 472.9

Oberlichtleuchte von Trennwänden

DE 402 02 313.7

Leuchten

DE 402 02 431.1

Trennwandleuchte II

DE 402 03 978

Lichtlenkjalousien bzw. Lichtlenkvorrichtung

DE 402 10 688

Jalousiebehang

DE 403 04 242

Lamellenvorhänge

DE 404 04 133.7

Lamellenvorhänge

M 9502488.3

Jalousie zur Tageslichtumlenkung

DM/052988 (15)

Blinds for reflecting sun and diffuse daylight as well as artificial light (2 x Retroluxtherm)

EP 00951306.0erteilt als EP 1212508

gezahnte Tageslichtlamelle

PCT/EP00/05929Intern. Application No.

gezahnte Tageslichtlamelle, toothed daylight blinds

CA 2,377,711

Toothed Daylight Blinds

USA 6,845,805

Toothed Daylight Blinds

AU 758 794

Toothed Daylight Blinds

EP 2006 005909

Medienfassade

PCT/EP2006/005909International Application No.

Medienfassade, s. auch, EP Anmeldenummer 06015154.5

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Köster, H. (2013). Daylighting Controls , Performance and Global Impacts. In: Loftness, V., Haase, D. (eds) Sustainable Built Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5828-9_198

Download citation

Publish with us

Policies and ethics