Renewable Energy Systems

2013 Edition
| Editors: Martin Kaltschmitt, Nickolas J. Themelis, Lucien Y. Bronicki, Lennart Söder, Luis A. Vega

Algae, a New Biomass Resource

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-5820-3_436

Definition of the Subject

Algae are oxygenic photoautotrophs , offering a very high level of biodiversity and thus suitable for different practical applications. Today, they are mainly cultivated for human/animal food or to extract high-value chemicals and pharmaceuticals. However, their exploitation could be extended. Algae are attractive as high yield biomass producers, because of the short life cycle, the ability to grow up to very high cell densities, and the easy large-scale cultivation that does not compete with other demands such as those of conventional crops agriculture. Algae can be a resource of renewable, sustainable biofuels . In addition, they can be transformed into “cell factories” to produce recombinant proteins of interest for pharmaceutical companies.

Introduction

Algae are described as “lower” plants that never have true stems, roots, and leaves, and grow photoautotrophically by performing oxygenic photosynthesis [1]. They are mostly eukaryotic, although...

This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. 1.
    Hallmann A (2007) Algal transgenics and biotechnology. Transgenic Plant J 1:81–98Google Scholar
  2. 2.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639Google Scholar
  3. 3.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240Google Scholar
  4. 4.
    Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96Google Scholar
  5. 5.
    McHugh DJ (2003) A guide to the seaweed industry. FAO Fish Tech Pap 441:1–105Google Scholar
  6. 6.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648Google Scholar
  7. 7.
    Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321Google Scholar
  8. 8.
    Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279Google Scholar
  9. 9.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306Google Scholar
  10. 10.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131Google Scholar
  11. 11.
    Xu H, Miao XL, Wu QY (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507Google Scholar
  12. 12.
    Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. TIBTECH 18:506–511Google Scholar
  13. 13.
    Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135Google Scholar
  14. 14.
    Melis A, Happe T (2004) Trails of green alga hydrogen research - from Hans Gaffron to new frontiers. Photosynth Res 80:401–409Google Scholar
  15. 15.
    Zhang LP, Melis A (2002) Probing green algal hydrogen production. Philos Trans R Soc Lond B Biol Sci 357:1499–1507Google Scholar
  16. 16.
    Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H-2 production in engineered green algal cells. J Biol Chem 280:34170–34177Google Scholar
  17. 17.
    Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371Google Scholar
  18. 18.
    Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187Google Scholar
  19. 19.
    Caldeira K, Jain AK, Hoffert MI (2003) Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 299:2052–2054Google Scholar
  20. 20.
    de Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352Google Scholar
  21. 21.
    Keffer JE, Kleinheinz GT (2002) Use of Chlorella vulgaris for CO(2) mitigation in a photobioreactor. J Ind Microbiol Biotechnol 29:275–280Google Scholar
  22. 22.
    Otsuki T (2001) A study for the biological CO2 fixation and utilization system. Sci Total Environ 277:21–25Google Scholar
  23. 23.
    Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607Google Scholar
  24. 24.
    Benson AA, Calvin M (1950) Carbon dioxide fixation by green plants. Annu Rev Plant Physiol 1:25–42Google Scholar
  25. 25.
    Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280Google Scholar
  26. 26.
    Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293Google Scholar
  27. 27.
    Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411Google Scholar
  28. 28.
    Borowitzka MA (2005) The mass culture of Dunaliella salina. http://www.fao.org/docrep/field/003/AB728E/AB728E06.htm
  29. 29.
    Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR (2008) Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom). Appl Biochem Biotechnol. doi:10.1007/s12010-008-8298-9Google Scholar
  30. 30.
    Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028Google Scholar
  31. 31.
    Mann JE, Myers J (1968) On pigments, growth and photosynthesis of Phaeodactylum tricornutum. J Phycol 4:349–355Google Scholar
  32. 32.
    Grima EM, Fernández FGA, Camacho FG, Rubio FC, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368Google Scholar
  33. 33.
    Melis A, Neidhardt J, Benemann JR (1998) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525Google Scholar
  34. 34.
    Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321Google Scholar
  35. 35.
    Bai YL, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094Google Scholar
  36. 36.
    Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  37. 37.
    Holt NE, Fleming GR, Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43:8281–8289Google Scholar
  38. 38.
    Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359Google Scholar
  39. 39.
    Durnford DG, Price JA, Mckim SM, Sarchfield ML (2003) Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii. Physiol Plant 118:193–205Google Scholar
  40. 40.
    Teramoto H, Nakamori A, Minagawa J, Ono T (2002) Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Plant Physiol 130:325–333Google Scholar
  41. 41.
    Wobbe L, Schwarz C, Nickelsen J, Kruse O (2008) Translational control of photosynthetic gene expression in phototrophic eukaryotes. Physiol Plant 133:507–515Google Scholar
  42. 42.
    Powles S (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44Google Scholar
  43. 43.
    Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135Google Scholar
  44. 44.
    Nakajima Y, Tsuzuki M, Ueda R (1998) Reduced photoinhibition of a phycocyanin deficient mutant of Synechocystis PCC 6714. J Appl Phycol 10:447–452Google Scholar
  45. 45.
    Naus J, Melis A (1991) Changes of photosystem stoichiometry during cell growth in Dunaliella salina cultures. Plant Cell Physiol 32:569–575Google Scholar
  46. 46.
    Neidhardt J, Benemann JR, Zhang L, Melis A (1998) Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth Res 56:175–184Google Scholar
  47. 47.
    Vener AV, Vankan PJM, Rich PR, Ohad I, Andersson B (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash. Proc Natl Acad Sci USA 94:1585–1590Google Scholar
  48. 48.
    Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. The Carnegie Institution, Washington, DC, pp 63–75Google Scholar
  49. 49.
    Polle JEW, Benemann JR, Tanaka A, Melis A (2000) Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source. Planta 211:335–344Google Scholar
  50. 50.
    Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95:12719–12723Google Scholar
  51. 51.
    Polle JEW, Niyogi KK, Melis A (2001) Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. Plant Cell Physiol 42:482–491Google Scholar
  52. 52.
    Elrad D, Niyogi KK, Grossman AR (2002) A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell 14:1801–1816Google Scholar
  53. 53.
    Baroli I, Gutman BL, Ledford HK, Shin JW, Chin BL, Havaux M, Niyogi KK (2004) Photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas. J Biol Chem 279:6337–6344Google Scholar
  54. 54.
    Dall'osto L, Cazzaniga S, Havaux M, Bassi R (2010) Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. Mol Plant 3:576–593Google Scholar
  55. 55.
    Niyogi KK, Bjorkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94:14162–14167Google Scholar
  56. 56.
    Polle JEW, Kanakagiri SD, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217:49–59Google Scholar
  57. 57.
    Mussgnug JH, Wobbe L, Elles I, Claus C, Hamilton M, Fink A, Kahmann U, Kapazoglou A, Mullineaux CW, Hippler M, Nickelsen J, Nixon PJ, Kruse O (2005) NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell 17:3409–3421Google Scholar
  58. 58.
    Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142:70–77Google Scholar
  59. 59.
    Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814Google Scholar
  60. 60.
    Tetali SD, Mitra M, Melis A (2007) Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene. Planta 225:813–829Google Scholar
  61. 61.
    Glick RE, Melis A (1988) Minimum photosynthetic unit size in system-I and system-II of barley chloroplasts. Biochim Biophys Acta 934:151–155Google Scholar
  62. 62.
    Falkowski PG, Owens TG (1980) Light-shade adaptation - 2 strategies in marine-phytoplankton. Plant Physiol 66:592–595Google Scholar
  63. 63.
    Dall'osto L, Caffarri S, Bassi R (2005) A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17:1217–1232Google Scholar
  64. 64.
    de Bianchi S, Ballottari M, Dall'osto L, Bassi R (2010) Regulation of plant light harvesting by thermal dissipation of excess energy. Biochem Soc Trans 38:651–660Google Scholar
  65. 65.
    Li XP, Bjorkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395Google Scholar
  66. 66.
    Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874Google Scholar
  67. 67.
    Bonente G, Howes BD, Caffarri S, Smulevich G, Bassi R (2008) Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. J Biol Chem 283:8434–8445Google Scholar
  68. 68.
    Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797Google Scholar
  69. 69.
    Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436Google Scholar
  70. 70.
    Bonente G, Passarini F, Cazzaniga S, Mancone C, Buia MC, Tripodi M, Bassi R, Caffarri S (2008) The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching. Photochem Photobiol 84:1359–1370Google Scholar
  71. 71.
    Niyogi KK, Bjorkman O, Grossman AR (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380Google Scholar
  72. 72.
    Alboresi A, Gerotto C, Giacometti GM, Bassi R, Morosinotto T (2010) Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc Natl Acad Sci USA 107:11128–11133Google Scholar
  73. 73.
    Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–U215Google Scholar
  74. 74.
    Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007Google Scholar
  75. 75.
    Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515Google Scholar
  76. 76.
    Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton reactions. Trends Plant Sci 9:349–357Google Scholar
  77. 77.
    Hoefnagel MHN, Atkin OK, Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. Biochim Biophys Acta: Bioenerg 1366:235–255Google Scholar
  78. 78.
    Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553Google Scholar
  79. 79.
    Scheibe R (1987) NADP-malate dehydrogenase in C3-plants: regulation and role of a light-activated enzyme. Physiol Plant 71:393–400Google Scholar
  80. 80.
    Cardol P, Gloire G, Havaux M, Remacle C, Matagne R, Franck F (2003) Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration. Plant Physiol 133:2010–2020Google Scholar
  81. 81.
    Cardol P, Alric J, Girard-Bascou J, Franck F, Wollman FA, Finazzi G (2009) Impaired respiration discloses the physiological significance of state transitions in Chlamydomonas. Proc Natl Acad Sci USA 106:15979–15984Google Scholar
  82. 82.
    Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550Google Scholar
  83. 83.
    Scherer S (1990) Do photosynthetic and respiratory electron-transport chains share redox proteins. Trends Biochem Sci 15:458–462Google Scholar
  84. 84.
    Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356Google Scholar
  85. 85.
    Jans F, Mignolet E, Houyoux PA, Cardol P, Ghysels B, Cuine S, Cournac L, Peltier G, Remacle C, Franck F (2008) A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci USA 105:20546–20551Google Scholar
  86. 86.
    Mus F, Cournac L, Cardettini W, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical plastoquinone reduction and H-2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta: Bioenerg 1708:322–332Google Scholar
  87. 87.
    Bailey S, Melis A, Mackey KRM, Cardol P, Finazzi G, van Dijken G, Berg GM, Arrigo K, Shrager J, Grossman A (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta: Bioenerg 1777:269–276Google Scholar
  88. 88.
    Cardol P, Bailleul B, Rappaport F, Derelle E, Beal D, Breyton C, Bailey S, Wollman FA, Grossman A, Moreau H, Finazzi G (2008) An original adaptation of photosynthesis in the marine green alga Ostreococcus. Proc Natl Acad Sci USA 105:7881–7886Google Scholar
  89. 89.
    Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999) Mutations in the Arabidopsis gene immutans cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57–68Google Scholar
  90. 90.
    Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262Google Scholar
  91. 91.
    Wu DY, Wright DA, Wetzel C, Voytas DF, Rodermel S (1999) The immutans variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43–55Google Scholar
  92. 92.
    Finazzi G, Furia A, Barbagallo RP, Forti G (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta: Bioenerg 1413:117–129Google Scholar
  93. 93.
    Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix JD, Zito F, Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3:280–285Google Scholar
  94. 94.
    Vallon O, Bulte L, Dainese P, Olive J, Bassi R, Wollman FA (1991) Lateral redistribution of cytochrome B6/F complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci USA 88:8262–8266Google Scholar
  95. 95.
    Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806–2817Google Scholar
  96. 96.
    Depege N, Bellafiore S, Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575Google Scholar
  97. 97.
    Fleischmann MM, Ravanel S, Delosme R, Olive J, Zito F, Wollman FA, Rochaix JD (1999) Isolation and characterization of photoautotrophic mutants of Chlamydomonas reinhardtii deficient in state transition. J Biol Chem 274:30987–30994Google Scholar
  98. 98.
    Rochaix JD (2007) Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581:2768–2775Google Scholar
  99. 99.
    Bonaventura C, Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189:366–383Google Scholar
  100. 100.
    Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172:242–251Google Scholar
  101. 101.
    Delosme R, Olive J, Wollman FA (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta: Bioenerg 1273:150–158Google Scholar
  102. 102.
    Bellafiore S, Bameche F, Peltier G, Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895Google Scholar
  103. 103.
    Ben Amotz A, Shaish A, Avron M (1989) Mode of action of the massively accumulated beta-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol 91:1040–1043Google Scholar
  104. 104.
    Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496Google Scholar
  105. 105.
    Rabbani S, Beyer P, Von Lintig J, Hugueney P, Kleinig H (1998) Induced beta-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248Google Scholar
  106. 106.
    Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331Google Scholar
  107. 107.
    Muradyan EA, Klyachko-Gurvich GL, Tsoglin LN, Sergeyenko TV, Pronina NA (2004) Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ J Plant Physiol 51:53–62Google Scholar
  108. 108.
    Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112Google Scholar
  109. 109.
    Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii - anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486Google Scholar
  110. 110.
    Roessler PG (1990) Purification and characterization of acetyl-CoA carboxylase from the diatom Cyclotella cryptica. Plant Physiol 92:73–78Google Scholar
  111. 111.
    Roessler PG, Ohlrogge JB (1993) Cloning and characterization of the gene that encodes acetyl-Coenzyme-A carboxylase in the alga Cyclotella cryptica. J Biol Chem 268:19254–19259Google Scholar
  112. 112.
    Roessler PG, Bleibaum JL, Thompson GA, Ohlrogge JB (1994) Characteristics of the gene that encodes acetyl-CoA carboxylase in the diatom Cyclotella cryptica. Recombinant DNA Technol II 721:250–256Google Scholar
  113. 113.
    Sheehan J, Dunahay T, Benemann J, Roessler PG (1998) US Department of Energy’s Office of Fuels Development. A look back at the US Department of Energy’s Aquatic Species Program – Biodiesel from algae. Close out report TP-580-24190. National Renewable Energy Laboratory, GoldenGoogle Scholar
  114. 114.
    Shintani DK, Ohlrogge JB (1995) Feedback inhibition of fatty-acid synthesis in tobacco suspension cells. Plant J 7:577–587Google Scholar
  115. 115.
    Klaus D, Ohlrogge JB, Neuhaus HE, Dormann P (2004) Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta 219:389–396Google Scholar
  116. 116.
    Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113:75–81Google Scholar
  117. 117.
    Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12(4):387–391Google Scholar
  118. 118.
    Arisz SA, van Himbergen JAJ, Musgrave A, van den Ende H, Munnik T (2000) Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry 53:265–270Google Scholar
  119. 119.
    Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186Google Scholar
  120. 120.
    Poerschmann J, Spijkerman E, Langer U (2004) Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb Ecol 48:78–89Google Scholar
  121. 121.
    Kimura K, Yamaoka M, Kamisaka Y (2004) Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Meth 56:331–338Google Scholar
  122. 122.
    Grobbelaar JU (2004) Algal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford, pp 97–115Google Scholar
  123. 123.
    Pyle DJ, Garcia RA, Wen ZY (2008) Producing docosahexaenoic acid (DHA)-rich algae from blodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939Google Scholar
  124. 124.
    Geng D, Wang Y, Wang P, Li W, Sun Y (2003) Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J Appl Phycol 15:451–456Google Scholar
  125. 125.
    Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100:438–442Google Scholar
  126. 126.
    Mayfield SP, Franklin SE (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23:1828–1832Google Scholar
  127. 127.
    Sayre RT, Wagner RE, Sirporanadulsil S, Farias C (2001) Transgenic algae for delivery antigens to animals. Int. Patent Number W.O.01/98335 A2Google Scholar
  128. 128.
    Sun M, Qian K, Su N, Chang H, Liu J, Shen G (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092Google Scholar
  129. 129.
    Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641Google Scholar
  130. 130.
    Govoni C, Morosinotto T, Giuliano G, Bassi R (2007) Exploiting photosynthesis for biofuel production. In: Pavesi L, Fauchet (eds) Biophotonics. Springer-Verlag, Berlin Heidelberg, pp 15–28Google Scholar
  131. 131.
    Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240Google Scholar
  132. 132.
    Surzycki R, Cournac L, Peltiert G, Rochaix JD (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci USA 104:17548–17553Google Scholar
  133. 133.
    Purton S (2007) Tools and techniques for chloroplast transformation of Chlamydomonas. Adv Exp Med Biol 616:34–45Google Scholar
  134. 134.
    Molina GE, Belarbi EH, Acien Fernandez FG, Robles MA, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515Google Scholar
  135. 135.
    Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529Google Scholar
  136. 136.
    Stevens DR, Rochaix JD, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251:23–30Google Scholar
  137. 137.
    Dunahay TG, Jarvis EE, Zeiler KG, Roessler PG, Brown LM (1992) Genetic-engineering of microalgae for fuel production - scientific note. Appl Biochem Biotechnol 34–5:331–339Google Scholar
  138. 138.
    Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C (1999) Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol 1:239–251Google Scholar
  139. 139.
    Merendino L, Perron K, Rahire M, Howald I, Rochaix JD, Goldschmidt-Clermont M (2006) A novel multifunctional factor involved in trans-splicing of chloroplast introns in Chlamydomonas. Nucleic Acids Res 34:262–274Google Scholar
  140. 140.
    Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277:221–229Google Scholar
  141. 141.
    Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 265:888–894Google Scholar
  142. 142.
    Schroda M, Blocker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131Google Scholar
  143. 143.
    Hallmann A, Sumper M (1994) An inducible arylsulfatase of Volvox carteri with properties suitable for a reporter-gene system - purification, characterization and molecular-cloning. Eur J Biochem 221:143–150Google Scholar
  144. 144.
    Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447Google Scholar
  145. 145.
    Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997) Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9:925–945Google Scholar
  146. 146.
    Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 18:126–133Google Scholar
  147. 147.
    McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457Google Scholar
  148. 148.
    Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137:545–556Google Scholar

Books and Reviews

  1. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271Google Scholar
  2. Dolley TP, Moyle PR (2003) History and overview of the U.S. diatomite mining industry, with emphasis on the Western United States. Contrib Ind Min Res: US Geol Surv Bull 2209:E1–E8Google Scholar
  3. Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726Google Scholar
  4. Rupprecht J (2009) From systems biology to fuel - Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. J Biotechnol 142:10–20Google Scholar
  5. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286Google Scholar
  6. Tredici MR (2003) Mass production of microalgae photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing, Malden, pp 178–214Google Scholar
  7. Van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge, UKGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly