Skip to main content

Biofuels : Upgraded New Solids

  • Reference work entry
  • First Online:
Renewable Energy Systems

Definition of the Subject and its Importance

For the energetic use of biomass, a number of combustion and gasification processes exist. Especially high efficient processes, often developed for the use of coal, have very strict fuel requirements. In many cases, “classical” solid biofuels (like wood logs, wood chips) cannot fulfill the requirements of these conversion processes. The solution is the adaption of the fuel properties to meet the process requirement by a pretreatment step. The results are upgraded “new” solid biofuels suitable for highly sophisticated conversion processes.

A second driver for biomass pretreatment is the increased demand for biomass as a renewable energy carrier. Therefore it is necessary to utilize also organic mass streams with low quality, e.g., leaves, bark, straw, and hay. Biomass pretreatment alters the transport, storage, and handling characteristics of solid biofuels, as well as their combustion and gasification properties. In doing so, it enables...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Upgraded solid biofuel :

is a solid fuel, which is produced in a technical process, using biomass as feedstock.

Pelletizing:

is the process of compressing material into the shape of a pellet.

Briquetting:

is a process of forming briquettes or compacts under pressure with bigger and other sizes than pellets.

Torrefaction:

is a mild pyrolysis process performed at temperatures between 200°C and 300°C within an inert atmosphere.

Hydrothermal carbonization:

is a process for the production of a solid fuel in hot pressurized water.

Biocoal:

is a solid fuel produced by hydrothermal carbonization

Bibliography

Primary Literature

  1. Kaltschmitt M (2009) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, vol 2, neu bearb. und erw. Aufl. Springer, Berlin, pp S. 264–S. 275

    Book  Google Scholar 

  2. Rumpf H (1958) Grundlagen und Methoden des Granulierens. Chem Ing Tech 30(3):S. 144–S. 158

    Article  Google Scholar 

  3. Rumpf H, Herrmann W (127) Eigenschaften, Bindungsmechanismen und Festigkeit von Agglomeraten. Aufbereitungstechnik 11(3):S. 117–S. 127

    Google Scholar 

  4. Pietsch W (2002) Agglomeration processes – Phenomena, technologies, Equipment. Wiley-VCH Verlag GmbH, Weinheim, pp S. 29–S. 138

    Google Scholar 

  5. Gilpin AS, Hermann TJ, Behnke KC, Fairschild FJ (2002) Feed moisture, retention time, and steam as quality and energy uitlization determinants in the pelleting process. Appl Eng Agric 18(3):S. 331–S. 338

    Article  Google Scholar 

  6. Skoch ER, Behnke KC, Deyoe CW, Binder SF (1981) The effect of steamconditioning rate on the pelleting process. Anim Feed Sci Technol 6:S. 83–S. 90

    Article  Google Scholar 

  7. Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol 101(3):1082–1090

    Article  Google Scholar 

  8. Pietsch W (2002) Agglomeration processes – Phenomena, technologies, Equipment. Wiley-VCH Verlag GmbH, Weinheim, pp S. 229–S. 383

    Google Scholar 

  9. Krug H, Naundorf W (1984) Braunkohlenbrikettierung – Grundlagen und Verfahrenstechnik, vol 1 + 2. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  10. Rieschel H (1963) Various types of briquetting presses and their applications. IBA Proc 8:S. 20–S. 34, In: Messman HC, Tibbetts TE: Elements of briquetting and agglomeration, Canada, 1977

    Google Scholar 

  11. Schubert H (2003) Handbuch der mechanischen Verfahrenstechnik: Partikeleigenschaften, Mikroprozesse, Makroprozesse, Zerteilen, Agglomerieren, Trennen, Mischen, Schüttgut, vol 1. Wiley-VCH, Weinheim, pp S. 433–S. 498

    Google Scholar 

  12. Ruttloff C et al (1981) Technologie Mischfuttermittel. VEB Fachbuchverlag, Leipzig, pp S. 286–S. 344

    Google Scholar 

  13. Obernberger I, Thek G (2009) Herstellung und energetische Nutzung von Pellets: Produktionsprozess, Eigenschaften, Feuerungstechnik, Ökologie und Wirtschaftlichkeit, 1st edn. BIOS Bioenergiesysteme, Graz

    Google Scholar 

  14. Thomas M, Zuilichem DJ, Poel AFBd (1997) Physical quality of pelleted animal feed 2. Contribution of processes and its conditions. Anim Feed Sci Technol 64:S. 173–S. 192

    Article  Google Scholar 

  15. Robinson RA (1971) The pelleting of animal feeds. IBA Proc 12:S. 97–S. 112, In: Messman HC, Tibbetts TE Elements of briquetting and agglomeration, Canada, 1977

    Google Scholar 

  16. Kiesewalter S, Röhricht C (2006) Herstellung und Nutzung von Brennstoffpellets aus landwirtschaftlicher Biomasse, Poster, Version: 2006

    Google Scholar 

  17. Kiesewalter S, Röhricht C (2008) Nutzung von kontaminierten Böden, Schriftreihe der Sächsischen Landesanstalt für Landwirtschaft, Heft 30, 2008

    Google Scholar 

  18. Kirsten C, Weller N, Lenz V, Pilz B (2010) Miscanthuspellets – Chancen und Erfahrungen in Deutschland, European Pellet Conference 2010

    Google Scholar 

  19. Behnke KC (2008) Aufbereiten und Konditionieren für die Pelletherstellung: Weltweit ein Kernthema in der Mischfuttertechnologie. Mühle und Mischfutter 145(16):S. 523–S. 527

    Google Scholar 

  20. Samson R, Duxbury P (2000) Assessment of Pelletized Biofuels

    Google Scholar 

  21. Jansen HD, Friedrich W (1985) Einfluss der Aufbereitung auf Pressfähigkeit und Energiebedarf bei der Mischfutterproduktion. Mühle und Mischfuttertechnik 122(45)

    Google Scholar 

  22. Tabil LG (1996) Binding and pelleting characteristics of alfalfa: PhD Thesis. University of Saskatchewan, 1996

    Google Scholar 

  23. Friedrich W, Rohbohm KF (1979) Der Verdichtungsvorgang in der Futtermittelpresse: Einfluss der Betriebsbedingungen auf Energiebedarf und Pelletfestigkeit. Mühle und Mischfuttertechnik 116(39):S. 527–S. 530

    Google Scholar 

  24. Adapa PK, Singh AK, Schoenau J, Tabil LG (2006) Pelleting characteristics of fractionated alfalfa grinds: hardness models. Powder Handling and Processing 18(5):S. 294–S. 299

    Google Scholar 

  25. Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30(7):S. 648–S. 654

    Article  Google Scholar 

  26. Gilbert P, Ryu C, Sharifi V, Swithenbank J (2009) Effect of process parameters on pelletisation of herbaceous crops. Fuel 88(8):S. 1491–S. 1497

    Article  Google Scholar 

  27. Adapa PK, Singh AK, SchoenauJ, Tabil LG (2006) Pelleting Characteristics of fractionated alfalfa grinds: hardness models. Powder Handling and Processing 18

    Google Scholar 

  28. Adapa PK, Tabil LG, Schoenau J, Sokhansanj S (2004) Pelleting characteristics of fractionated sun-cured and dehydrated alfalfa grinds. Appl Eng Agric 20(6):S. 813–S. 820

    Article  Google Scholar 

  29. Larson SH, Thyrel M, Geladi P, Lestander TA (2008) High quality biofuel pellet production from pre-compacted low density raw materials. Bioresour Technol 99(15):S. 7176–S. 7182

    Article  Google Scholar 

  30. Friedrich W (1983) Warum ist Dampfzugabe beim Pelletieren wirtschaftlicher als Wasser? Mühle und Mischfuttertechnik 120(14)

    Google Scholar 

  31. Kiesewalter S, Röhricht C (2004) Pelletierung von Stroh und Heu, European Pellets Conference 2004 – Proceedings, S. 283–S. 295

    Google Scholar 

  32. Löwe R (2004) Pelletierverhalten rohfaserreicher Futtermischungen. Mühle und Mischfutter 141(18):S. 577–S. 582

    Google Scholar 

  33. Kiesewalter, Röhricht C (2007) Untersuchungen zur energetischen Nutzung von Heupellets mit verschiedenen Zuschlagsstoffen in zwei unterschiedlichen Feuerungsanlagen. In: Nutzungsalternativen für Grünland, Schriftreihe der Sächsischen Landesanstalt für Landwirtschaft, Heft 2, 2007

    Google Scholar 

  34. Steenarie B-M, Lundberg A, Petersson H, Wilewska-Bien M, Andersson D (2009) Investigation of ash sintering during combustion of agricultural residiues and the effect of additives. Energy Fuels 23:5655–5662

    Article  Google Scholar 

  35. Steenarie B-M, Lindqvist O (1998) High-Temperature reactions of straw ash and the anti-sintering additives Kaolin and Dolomite. Biomass Bioenergy 14:67–76

    Article  Google Scholar 

  36. Fernández Llorente MJ, Díaz Arocas P, Gutiérrez Nebot L, Carrasco García JE (2008) The effect of the chemical materials on the sintering of biomass ash. Fuel 87:S.2651–S.2658

    Article  Google Scholar 

  37. Girard P, Shah N (1989) Recent developments on torrefied wood, an alternative to charcoal for reducing deforestation. In: FAO/CNRE Workshop, Norway, 1989, pp 101–114

    Google Scholar 

  38. Bergman PC (2005) Combined torrefaction and pelletisation. ECN-C-05-073, Energy research Centre of the Netherlands (ECN). Petten, Netherlands, 2005

    Google Scholar 

  39. Shafizadeh F (1982) Introduction to pyrolysis of biomass. Name J Anal Appl Pyrol 3:283–305

    Article  Google Scholar 

  40. Bergman PC, Boersma AR, Kiel J, Prins MJ, Ptasinski KJ, Janssen FJ et al (2005) Torrefaction for entrained-flow gasification of biomass. ECN-C-05-067, Energy research Centre of the Netherlands (ECN), Petten, Netherlands, 2005

    Google Scholar 

  41. Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus Biomasse. Grundlagen, Techniken und Verfahren. 2. neu bearbeitete und erweiterte Auflage. Media. Springer, Berlin Heidelberg, 2009

    Google Scholar 

  42. Bergman P, Boersma A, Kiel J, Zwart R (2005) Torrefaction for biomass co-firing in existing coal-fired power stations “BIOCOAL”. ECN-C-05-013, Energy research Centre of the Netherlands (ECN), Petten, Netherlands, 2005

    Google Scholar 

  43. Bridgeman T, Jones J, Shield I, Williams P (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87:844–856

    Article  Google Scholar 

  44. Felfli FF, Luengo CA, Suárez JA, Beatón PA (2005) Wood briquette torrefaction. Energy Sustain Dev IX:19–22

    Article  Google Scholar 

  45. Bourgois J, Guyonnet R (1988) Characterization and analysis of torrefied wood. Wood Sci Technol 22:143–155

    Article  Google Scholar 

  46. Couhert C, Commandre J, Salvador S (2009) Impact of torrefaction on syngas production from wood. Fuel 88:2286–2290

    Article  Google Scholar 

  47. Prins MJ, Ptasinski KJ, Janssen FJ (2006) Torrefaction of wood Part 1. Weight loss kinetics J Anal Appl Pyrol 77:28–34

    Article  Google Scholar 

  48. Deng J, Wang G, Kuang J, Zhang Y, Luo Y (2009) Pretreatment of agricultural residues for co-gasification via torrefaction. J Anal Appl Pyrol 86:331–337

    Article  Google Scholar 

  49. Arias B et al (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89:169–175

    Article  Google Scholar 

  50. Ullmann’s encyclopedia of industrial chemistry (2002). Wiley-VCH.

    Google Scholar 

  51. Bergius F (1913) Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle. Knapp. Halle (Saale), 1913

    Google Scholar 

  52. Thrän D et al (2006) Sustainable strategies for biomass use in the european context. Analysis in the charged debate on national guidelines and the competition between solid, liquid and gaseous biofuels. IE-Report 1/2006. Leipzig, 2006

    Google Scholar 

  53. Guo Y et al (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renewable Sustainable Energy Rev 14:334–343

    Article  Google Scholar 

  54. Berl E (1934) Origin of asphalts, oils, natural gas and bituminous coal. Science 80:227–228

    Article  Google Scholar 

  55. Berl E (1944) Production of oil from plant material. Science 99:309–312

    Article  Google Scholar 

  56. Goudriaan F et al (2001) Progress in thermochemical biomass conversion. Blackwell Science Ltd., Oxford, pp 1312–1325

    Google Scholar 

  57. Peterson A et al (2008) Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65

    Article  Google Scholar 

  58. Matsumura Y (2002) Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan. Energy Convers Manage 43:1301–1310

    Article  Google Scholar 

  59. Lu Y et al (2007) Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chem Eng J 131:233–244

    Article  Google Scholar 

  60. Kruse A, Dinijus E (2007) Hot compressed water as reaction medium and reactant Properties and synthesis reactions. J Supercrit Fluids 39:362–380

    Article  Google Scholar 

  61. Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manage 51:969–982

    Article  Google Scholar 

  62. Kruse A, Gawlik A, Henningsen T (2002) Reaktionen von Biomassen in heißem Hockdruckwasser: Schlüsselsubstanzen als Werkzeug zum Verständnis der Chemie bei Vergasung und Verflüssigung. DGMK-Fachbereichstagung “Energetische Nutzung von Biomassen.” Velen, German, 22–24 April 2002

    Google Scholar 

  63. Karagöz S, Bhaskar T, Muto A et al (2005) Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84:875–884

    Article  Google Scholar 

  64. Sinag A, Gülbay S, Uskan B et al (2009) Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose. J Supercritical Fluid 50:121–127

    Article  Google Scholar 

  65. Srokol Z, Bouche AG, van Estrik A et al (2004) Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohydr Res 339:1717–1726

    Article  Google Scholar 

  66. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts & Biorefining, 2010

    Google Scholar 

  67. Titirici AM, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2-problem. New J Chem 31:787–789

    Article  Google Scholar 

  68. EnerTech Environmental Inc (2006) The SlurryCarb™-process

    Google Scholar 

  69. Wittmann T (2009) Energetische Nutzung von Kohle aus Biomasse. Fachgespräch der FNR “Hydrothermale Carbonisierung – Stand der Entwicklung.” Berlin, 11/12 Feb 2009

    Google Scholar 

  70. BelusaT. et al (2010) Hydrothermale Karbonisierung und energetische Nutzung von Biomasse- Möglichkeiten und Grenzen. In: Hydrothermale Carbonisierung. Gülzower Fachgespräche, vol 33, FNR 2010

    Google Scholar 

  71. Ranke HG (2009) Wässrige Phase aus der HTC: Zusammensetzung und Abbaubarkeit. Fachveranstaltung “Energie und Rohstoffe aus landwirtschaftlichen Reststoffen – Hydrothermale Carbonisierung ein geeignetes Verfahren?” des Johann Heinrich von Thünen-Instituts, Berlin

    Google Scholar 

  72. Altensen R, Richarts F (2008) Hydrothermal Carbonisierung (HTC) ein neues Verfahren zum Erzeugen von Kohle aus Pflanzen und Pflanzenresten. RENEXPO Augsburg 10. Oktober 2008

    Google Scholar 

  73. Griebe St, Krautz H-J, Paulick G Möglichkeiten der thermischen Verwertung von mechanisch entwässertem Klärschlamm und weiteren Reststoffen in einer mit Trockenbraunkohle betriebenen Zykloidfeuerung. www.kwt.tu-cottbus.de

  74. Schuchardt F (2009) Organische Reststoffe aus Landwirtschaft, Agrarindustrie und Kommunen. Fachveranstaltung “Energie und Rohstoffe aus landwirtschaftlichen Reststoffen – Hydrothermale Carbonisierung ein geeignetes Verfahren?”. des Johann Heinrich von Thünen-Instituts, Berlin 5

    Google Scholar 

  75. Richarts F (2009) Feste Bestandteile aus der HTC: Zusammensetzung und energetische Verwertung. Fachveranstaltung “Energie und Rohstoffe aus landwirtschaftlichen Reststoffen – Hydrothermale Carbonisierung ein geeignetes Verfahren?”. des Johann Heinrich von Thünen-Instituts, Berlin

    Google Scholar 

  76. Wittmann T (2010) Veredlung von Biomasse zu SunCoal im CarboREN-Verfahren. Erdöl Erdgas Kohle 12(6):215

    Google Scholar 

  77. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonisation of cellulose. Carbon 47:2281ff

    Article  Google Scholar 

  78. Kammann C (2010) Biokohle gegen den Klimawandel – Potentiale und Forschungsbedarf. Pyrolyse, HTC, Biochar Co., Hoechst, 17 März 2010

    Google Scholar 

  79. Hu B, Antonietti M et al (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813 ff

    Article  Google Scholar 

  80. Nielsen NPK (2009) Taking analysis of raw material for wood – Pellets a step further. Bioenergie International 38(3):S. 17–S. 19

    Google Scholar 

  81. Nielsen NPK (2010) Production an R&D – Test facilities for biomass milling and pelletizing, Opening for test plant for bio-pelleting. Sdr. Stenderup, Denmark

    Google Scholar 

  82. Holm JK, Henriksen UB, Hustad JE, Sorensen LH (2006) Toward an understanding of controlling parameters in softwood and hardwood pellets production. Energy Fuels 20(6):2686–2694

    Article  Google Scholar 

  83. Stelte W (2010) Predictive method for estimating the pelletizing properties of different types of biomass. European Pellet Conference, 2010

    Google Scholar 

  84. Gessner H (1985) Die pelletierung von Futtermitteln. Mühle und Mischfuttertechnik 122

    Google Scholar 

  85. Jannasch R, Quan Y, Samson R (2001) A process and energy analysis of pelletizing switchgrass: final report: prepared for: natural resources Canada. Alternative Energy Division, 2001

    Google Scholar 

  86. Yan W, Acharjee TC, Coronella CJ, Va VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustainable Energy 28:435–440

    Article  Google Scholar 

Books and Reviews

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Klemm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Klemm, M., Schmersahl, R., Kirsten, C., Weller, N. (2013). Biofuels : Upgraded New Solids . In: Kaltschmitt, M., Themelis, N.J., Bronicki, L.Y., Söder, L., Vega, L.A. (eds) Renewable Energy Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5820-3_247

Download citation

Publish with us

Policies and ethics