Skip to main content

Organic Solar Cells

  • Reference work entry
  • First Online:
Solar Energy

Definition of the Subject

Organic photovoltaics (OPVs) are devices made of organic (carbon-based) semiconducting small molecules or polymers for converting incident sunlight into electrical power. They differ significantly from inorganic photovoltaic (PV) devices in the physical principles of their operation, as well as in their methods of production. OPVs are based on organic thin films of tens to a few hundreds of nanometers and can be fabricated using printing, vacuum evaporation, and roll-to-roll coating techniques, and thus offer the potential for ultra low-cost mass-producible photovoltaic devices. This is in contrast with the costly and energy-intensive fabrication of traditional crystalline silicon-based photovoltaics. OPV can be easily integrated into consumer electronics devices, even textiles and other mechanically flexible structural elements due to their production methods. An...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bulk heterojunction:

A mixture of interpenetrating electron-donor and electron-acceptor conjugated molecules that allows absorption of light, generation of excitons, splitting of excitons at the donor-acceptor interface, and efficient transport of positive and negative charges to opposite electrodes.

Conjugated molecule:

An organic (carbon-based) molecule with delocalized electrons moving through π bonding orbitals. Conjugated molecules strongly absorb certain wavelengths of light due to excitation of π electrons from bonding π-orbitals to higher energy orbitals. As a result of delocalization of electrons, conjugated molecules also conduct charge. All organic semiconductors belong to this family of compounds.

Electron acceptor:

A molecule that can accept electrons, thereby becoming reduced. The measure of electron acceptor strength is electron affinity, which also corresponds to work function in metals and semiconductors.

Electron donor:

A molecule that donates electrons to another compound, thereby becoming oxidized. Following excitation with light, excited electrons can be donated to an acceptor molecule with a lower electron energy level. How easily a molecule gives up an electron depends on its ionization potential.

Exciton:

A quasiparticle that forms in insulators and semiconductors following absorption of a photon. Consisting of a Coulombically bound electron and positive hole pair, it can be split due to interaction with a neighboring electron-accepting conjugated molecule into free positive and negative charges. Its binding energy depends on the dielectric constant of the material in which it forms.

P3HT poly(3-hexyl thiophene):

A polythiophene with a pendant 6-carbon side-chain which provides high solubility in organic solvents. P3HT is a good electron donor material that effectively transports positive holes. When blended together with PCBM, 5% efficiency solution-processed solar cells can be achieved.

PCBM ([6,6]-phenyl C61-butyric acid methyl ester):

A soluble derivative of buckminsterfullerene (C60) that is one of the most successful electron acceptor materials used in solution-processed organic solar cells. It effectively transports electrons from molecule to molecule as well.

Phthalocyanines:

A family of macrocyclic pigments with strong absorption in the red part of the visible spectrum, good electron-donor properties, high stability, and effective hole transport. They can be sublimed in vacuum to form thin films used in vacuum-evaporated organic solar cells.

Bibliography

Primary Literature

  1. Kearns D, Calvin M (1958) Photovoltaic effect and photoconductivity in laminated organic systems. J Chem Phys 29:950–951

    Google Scholar 

  2. Morel DL, Stogryn EL, Ghosh AK, Feng T, Purwin PE, Shaw RF, Fishman C, Bird DR, Piechowski AP (1984) Organic photovoltaic cells. Correlations between cell performance and molecular structure. J Phys Chem 88:923–933

    Google Scholar 

  3. Tang CW, Albrecht AC (1975) Photovoltaic effects of metal–chlorophyll-a–metal sandwich cells. J Chem Phys 62:2139

    Google Scholar 

  4. Corker GA, Lundstrom I (1978) Trapped-electron doping of photovoltaic sandwich cells containing microcrystalline chlorophyll a. J Appl Phys 49:686–700

    Google Scholar 

  5. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185

    Google Scholar 

  6. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476

    Google Scholar 

  7. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Func Mat 21:1323–1338

    Google Scholar 

  8. Atkins P, de Paula J (2001) Physical chemistry. Oxford University Press, New York

    Google Scholar 

  9. Brunetti FG, Kumar R, Wudl F (2010) Organic electronics from perylene to organic photovoltaics: painting a brief history with a broad brush. J Mater Chem 20:2934–2948

    Google Scholar 

  10. Nelson J (2003) Physics of solar cells. Imperial College Press, London

    Google Scholar 

  11. Sariciftci NS (ed) (1999) Primary photoexcitations in conjugated polymers: molecular exciton versus semiconductor band model. World Scientific, Singapore

    Google Scholar 

  12. Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers, 2nd edn. Oxford University Press, New York

    Google Scholar 

  13. Tang CW, VanSlyke SA, Chen CH (1989) Electroluminescence of doped organic thin films. J Appl Phys 65:3610

    Google Scholar 

  14. Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB (1996) Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl Phys Lett 68:3120

    Google Scholar 

  15. Haugeneder A, Neges M, Kallinger C, Spirkl W, Lemmer U, Feldmann J, Scherf U, Harth E, Gügel A, Müllen K (1999) Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys Rev B 59:15346

    Google Scholar 

  16. Lungenschmied C, Dennler G, Neugebauer H, Sariciftci NS, Ehrenfreund E (2006) Internal electric field in organic-semiconductor-based photovoltaic devices. Appl Phys Lett 89:223519–223521

    Google Scholar 

  17. Zhu X-Y, Yang Q, Muntwiler M (2009) Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc Chem Res 42:1779–1787

    Google Scholar 

  18. Weiss DS, Abkowitz M (2010) Advanced in organic photoconductor technology. Chem Rev 110:479–526

    Google Scholar 

  19. Rice MJ, Gartstein YN (1996) Theory of photoinduced charge transfer in a molecularly doped conjugated polymer. Phys Rev B 53:10764–10770

    Google Scholar 

  20. Wu MW, Conwell EM (1998) Theory of photoinduced charge transfer in weakly coupled donor-acceptor conjugated polymers: application to an MEH-PPV:CN-PPV pair. Chem Phys 227:11–17

    Google Scholar 

  21. Beckers EHA, Meskers SCJ, Schenning APHJ, Chen ZJ, Wurthner F, Marsal P, Beljonne D, Cornil J, Janssen RAJ (2006) Influence of intermolecular orientation on the photoinduced charge transfer kinetics in self-assembled aggregates of donor-acceptor arrays. J Am Chem Soc 128:649–657

    Google Scholar 

  22. Paddon-Row MN (1994) Investigating long-range electron-transfer processes with rigid, covalently linked donor-(norbornylogous bridge)-acceptor systems. Acc Chem Res 27:18–25

    Google Scholar 

  23. Guldi DM (2002) Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev 31:22–36

    Google Scholar 

  24. Kraabel B, Hummelen JC, Vacar D, Moses D, Sariciftci NS, Heeger AJ, Wudl F (1996) Subpicosecond photoinduced electron transfer from conjugated polymers to functionalized fullerenes. J Chem Phys 104:4267–4273

    Google Scholar 

  25. Müller JG, Lupton JM, Feldmann J, Lemmer U, Scharber MC, Sariciftci NS, Brabec CJ, Scherf U (2005) Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer:fullerene solar cells. Phys Rev B 72:195208

    Google Scholar 

  26. Tsuzuki T, Shirota Y, Rostalski J, Meissner D (2000) The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment. Sol Energ Mat Sol C 61:1–8

    Google Scholar 

  27. Hwang KC, Mauzerall D (1993) Photoinduced electron transport across a lipid bilayer mediated by C70. Nature 361:138–140

    Google Scholar 

  28. Karl N (2003) Charge carrier transport in organic semiconductors. Synth Met 133–134:649–657

    Google Scholar 

  29. Jaiswal M, Menon R (2006) Polymer electronic materials: a review of charge transport. Polym Int 55:1371–1384

    Google Scholar 

  30. Kline RJ, McGehee MD (2006) Morphology and charge transport in conjugated polymers. J Macromol Sci 46:27–45

    Google Scholar 

  31. Pivrikas A, Sariciftci NS, Juska G, Österbacka R (2007) Review of charge transport and recombination in polymer/fullerene organic solar cells. Prog Photovoltaics: Res Appl 15:677–696

    Google Scholar 

  32. Sze SM, Kwok NK (2006) Physics of semiconductor devices, 3rd edn. Wiley-Interscience, Hoboken

    Google Scholar 

  33. Parker ID (1994) Carrier tunneling and device characteristics in polymer light-emitting diodes. J Appl Phys 75:1656

    Google Scholar 

  34. Zhang M, Wang H, Tang CW (2010) Effect of the highest occupied molecular orbital energy level offset on organic heterojunction photovoltaic cells. Appl Phys Lett 97:143503–143506

    Google Scholar 

  35. Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11:374

    Google Scholar 

  36. Kooistra FB, Knol J, Kastenberg F, Popescu LM, Verhees WJH, Kroon JM, Hummelen JC (2007) Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. Org Lett 9:551

    Google Scholar 

  37. Kim H, Jin S-H, Suh H, Lee K (2004) Origin of the open circuit voltage in conjugated polymer–fullerene photovoltaic cells. In: Kafafi ZH, Lane PA (eds) Organic photovoltaics IV. SPIE Proc 5215:111

    Google Scholar 

  38. Gadisa A, Svensson M, Andersson MR, Inganäs O (2004) Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Appl Phys Lett 84:1609

    Google Scholar 

  39. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells – towards 10% energy-conversion efficiency. Adv Mater 18:789

    Google Scholar 

  40. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energ Mat Sol C 93:394–412

    Google Scholar 

  41. Konarka Website (http://www.konarka.com/). Accessed 10 Dec 2010

  42. Pagliaro M, Ciriminna R, Palmisano G (2008) Flexible solar cells. Wiley-VCH, Weinheim

    Google Scholar 

  43. Brumbach M, Veneman F, Saneeha M, Schulmeyer T, Simmonds A, Xia W, Lee P, Armstrong NR (2007) Surface compositions and electrical and electrochemical properties of freshly deposited and acid-etched indium Tin oxide electrodes. Langmuir 23:11089–11099

    Google Scholar 

  44. Forrest S, Xue J (2004) Carrier transport in multilayer organic photodetectors: II effects of anode preparation. J Appl Phys 95:1869–1877

    Google Scholar 

  45. Armstrong NR, Veneman PA, Ratcliff E, Placencia D, Brumbach M (2009) Oxide contacts in organic photovoltaics: characterization and control of near-surface composition in indium − Tin oxide (ITO) electrodes. Acc Chem Res 42:1748–1757

    Google Scholar 

  46. Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL (2008) An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl Phys Lett 93:221107–221110

    Google Scholar 

  47. Murdoch GB, Hinds S, Sargent EH, Tsang SW, Mordoukhovski L, Lu ZH (2009) Aluminum doped zinc oxide for organic photovoltaics. Appl Phys Lett 94:213301–213303

    Google Scholar 

  48. Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Andriessen R, Leenders L (2004) Printable anodes for flexible organic solar cell modules. Thin Solid Films 22–25:451–452

    Google Scholar 

  49. Dietrich M, Heinze J, Heywang G, Jonas F (1994) Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J Electroanal Chem 369:87–92

    Google Scholar 

  50. Vitoratos E, Sakkopoulos S, Dalas E, Paliatsas N, Karageorgopoulos D, Petraki F, Kennou S, Choulis SA (2009) Thermal degradation mechanisms of PEDOT:PSS. Org Electron 10:61–66

    Google Scholar 

  51. Nardes AM, Kemerink M, de Kok MM, Vinken E, Maturova K, Janssen RAJ (2008) Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org Electron 9:727–734

    Google Scholar 

  52. Norrman K, Madsen MV, Gevorgyan SA, Krebs FC (2010) Degradation patterns in water and oxygen of an inverted polymer solar cell. J Amer Chem Soc 132:16883–16892

    Google Scholar 

  53. Zhang M, Irfan DH, Gao Y, Tang CW (2010) Organic Schottky barrier photovoltaic cells based on MoOx/C60. Appl Phys Lett 96:183301–183303

    Google Scholar 

  54. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS 105:2783–2787

    Google Scholar 

  55. Moulé AJ, Meerholz K (2009) Morphology control in solution-processed bulk-heterojunction solar cell mixtures. Adv FuncMat 19:3028–3036

    Google Scholar 

  56. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Func Mat 11:15–26

    Google Scholar 

  57. Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, Janssen RAJ (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angewandte Chemie 115:3493–3497

    Google Scholar 

  58. Melzer C, Koop EJ, Mihailetchi VD, Blom PWM (2004) Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. Adv Funct Mater 14:865–870

    Google Scholar 

  59. Cumpston BH, Jensen KF (1998) Photooxidative stability of substituted poly(phenylene vinylene) (PPV) and poly(phenylene acetylene) (PPA). J Appl Polym Sci 69:2451–2458

    Google Scholar 

  60. Jorgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Sol Energ Mat Sol C 92:686–714

    Google Scholar 

  61. Ma W, Yang C, Gong X, Lee K, Heeger A (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Func Mat 15:1617–1622

    Google Scholar 

  62. Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia S, Williams SP (2010) Polymer–fullerene bulk-heterojunction solar cells. Adv Mat 22:3839–3856

    Google Scholar 

  63. McCullough RD (1998) The chemistry of conducting polythiophenes. Adv Mat 10:93–116

    Google Scholar 

  64. Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97:173–206

    Google Scholar 

  65. McCullough RD, Lowe RD (1992) Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J Chem Soc, Chem Comm 1:70–72

    Google Scholar 

  66. McCullough RD, Tristram-Nagle S, Williams SP, Lowe RD, Jayaraman M (1993) Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers. J Am Chem Soc 115:4910–4911

    Google Scholar 

  67. Roncali J (1992) Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738

    Google Scholar 

  68. Schilinsky P, Waldauf C, Brabec CJ (2002) Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl Phys Lett 81:3885–3887

    Google Scholar 

  69. Padinger F, Rittberger R, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Func Mat 13:85–88

    Google Scholar 

  70. Moon Ji Sun, Takacs CJ, Cho S, Coffin RC, Kim H, Bazan GC, Heeger AJ (2010) Effect of processing additive on the nanomorphology of a bulk heterojunction material. Nano Lett 10:4005–4008

    Google Scholar 

  71. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Google Scholar 

  72. Ma W, Yang C, Gong X, Lee K, Heeger A (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Func Mat 15:1617–1622

    Google Scholar 

  73. Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15:1317–1323

    Google Scholar 

  74. Kim Y, Choulis SA, Nelson J, Bradley DDC, Cook S, Durrant JR (2005) Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Appl Phys Lett 86:63502–63505

    Google Scholar 

  75. Yang X, Loos J, Veenstra SC, Verhees VJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579–583

    Google Scholar 

  76. Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Correlation between structural and optical properties of composite polymer films for organic solar cells. Adv Func Mater 15:1193–1196

    Google Scholar 

  77. Erb T, Zhokhavets U, Gobsch G, Al-Ibrahim M, Ambacher O (2006) Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells. Chem Phys Lett 418:347–350

    Google Scholar 

  78. Yang X, van Duren JKJ, Rispens MT, Hummelen JC, Janssen RAJ, Michels MAJ, Loos J (2004) Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv Mater 16:802–806

    Google Scholar 

  79. Yang X van Duren JKJ, Janssen RAJ, Michels MAJ, Loos J (2004) Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 37:2151–2158

    Google Scholar 

  80. Schuller S, Schilinsky P, Hauch J, Brabec CJ (2004) Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements. Appl Phys A 79:37–40

    Google Scholar 

  81. Drees M, Hoppe H, Winder C, Neugebauer H, Sariciftci NS, Schwinger W, Schäffler F, Topf C, Scharber MC, Zhu Z, Gaudiana R (2005) Stabilization of the nanomorphology of polymer/fullerene “bulk heterojunction” blends using a novel polymerizable fullerene derivative. J Mater Chem 15:5158–5163

    Google Scholar 

  82. Sivula K, Ball ZT, Watanabe N, Fréchet JMJ (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv Mater 18:206–210

    Google Scholar 

  83. Huang J, Li G, Yang Y (2005) Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends. Appl Phys Lett 87:112105–112107

    Google Scholar 

  84. Li G, Shrotriya V, Yao Y, Yang Y (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys 98:43704–43708

    Google Scholar 

  85. Hoppe H, Shokhovets S, Gobsch G (2007) Inverse relation between photocurrent and absorption layer thickness in polymer solar cells. Phys Stat Sol 1:R40

    Google Scholar 

  86. Schilinsky P, Asawapirom U, Scherf U, Biele M, Brabec CJ (2005) Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chem Mater 17:2175–2180

    Google Scholar 

  87. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha C-S, Ree M (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat Mater 5:197–203

    Google Scholar 

  88. Forrest SR (1997) Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev 97:1793–1896

    Google Scholar 

  89. Diamond AS, Weiss DS (eds) (2002) Handbook of imaging materials. Marcel Dekker, New York

    Google Scholar 

  90. Tang CW, VanSlyke SA, Chen CH (1989) Electroluminescence of doped organic thin films. J Appl Phys 65:3610–3616

    Google Scholar 

  91. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723

    Google Scholar 

  92. Hiramoto M, Fujiwara H, Yokoyama M (1991) 3-layered organic solar-cell with a photoactive interlayer of codeposited pigments. Appl Phys Lett 58:1062–1064

    Google Scholar 

  93. Peumans P, Bulovic V, Forrest SR (2000) Efficient photon harvesting at high optical intensities in ultra thin organic double-heterostructure photovoltaic diodes. Appl Phys Lett 76:2650–2652

    Google Scholar 

  94. Vogel M, Doka S, Breyer C, Lux-Steiner M, Cand Fostiropoulos K (2006) On the function of a bathocuproine buffer layer in organic photovoltaic cells. Appl Phys Lett 89:163501–163503

    Google Scholar 

  95. Drechsel J, Maennig B, Gebeyehu D, Pfeiffer M, Leo K, Hoppe H (2004) MIP-type organic solar cells incorporating phthalocyanine/fullerene mixed layers and doped wide-gap transport layers. Org Electron 5:175–186

    Google Scholar 

  96. Falkenberg C, Uhrich C, Olthof S, Maennig B, Riede M, Leo K (2008) Efficient p–i–n type organic solar cells incorporating 1,4,5,8-napthalenetetracarboxylic dianhydride as transparent electron transport material. J Appl Phys 104:34506

    Google Scholar 

  97. Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107:1233–1271

    Google Scholar 

  98. Shockley S, Queisser HJ (1961) Detailed balance limit of p-n junction solar cells. J Appl Phys 32:510–519

    Google Scholar 

  99. De Vos A (1980) Detailed balance limit of the efficiency of tandem solar cells. J Phys D 13:839–846

    Google Scholar 

  100. Schueppel R, Timmreck R, Allinger N, Mueller T, Furno M, Uhrich C, Leo K, Riede M (2010) Controlled current matching in small molecule organic tandem solar cells using doped spacer layers. J Appl Phys 107:044503–044508

    Google Scholar 

  101. Timmreck R, Olthof S, Leo K, Riede M (2010) Highly doped layers as efficient electron–hole recombination contacts for tandem organic solar cells. J Appl Phys 108:33108–33113

    Google Scholar 

  102. Heliatek and IAPP achieve production-relevant efficiency record for organic photovoltaic cells. http://www.heliatek.com/news. Accessed on Dec 2010

  103. Kim JB, Lee S, Toney MF, Chen Z, Facchetti A, Kim YS, Loo Y-L (2010) Reversible soft-contact lamination and delamination for non-invasive fabrication and characterization of bulk-heterojunction and bilayer organic solar cells. Chem Mater 22:4931–4938

    Google Scholar 

  104. Kim J, Khang D-Y, Kim J-H, Lee HH (2008) The surface engineering of top electrode in inverted polymer bulk-heterojunction solar cells. Appl Phys Lett 92:133307–133309

    Google Scholar 

  105. Lee J-Y, Connor ST, Cui Y, Peumans P (2010) Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett 10:1276–1279

    Google Scholar 

  106. Gaynor W, Lee J-Y, Peumans P (2010) Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 4:30–34

    Google Scholar 

  107. Choong V-E, Mason MG, Tang CW, Gao Y (1998) Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum. Appl Phys Lett 72:2689–2691

    Google Scholar 

  108. Park Y, Choong V-E, Hsieh BR, Tang CW, Wehrmeister T, Mullen K, Gao Y (1997) Electron spectroscopy studies of interface formation between metal electrodes and luminescent organic materials. J Vac Sci Technol A 15:2574–2578

    Google Scholar 

  109. Park Y, Choong V-E, Hsieh BR, Gao Y, Wehrmeister T, Mullen K, Tang CW (1997) Effects of Al, Ag, and Ca on luminescence of organic materials. J Vac Sci Technol A 15:1745–1749

    Google Scholar 

  110. Hung LS, Mason MG, Tang CW (1997) Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. J Appl Phys Lett 70:152–154

    Google Scholar 

  111. Shaheen SE, Jabbour GE, Morrell MM, Kawabe Y, Kippelen B, Peyghambarian N, Nabor M-F, Schlaf R, Mash EA, Armstrong NR (2009) Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode. J Appl Phys 84:2324–2327

    Google Scholar 

  112. Glowacki ED, Marshall KL, Tang CW, Sariciftci NS (2011) Doping of organic semiconductors induced by lithium fluoride/aluminum electrodes studied by electron spin resonance and infrared reflection-absorption spectroscopy. Appl Phys Lett 99:043305–043307

    Google Scholar 

  113. Mihailetchi VD, Koster LJA, Blom PWM (2004) Effect of metal electrodes on the performance of polymer:fullerene bulk heterojunction solar cells. Appl Phys Lett 85:970–973

    Google Scholar 

  114. Frohne H, Shaheen SE, Brabec CJ, Müller DC, Sariciftci NS, Meerholz K (2002) Influence of the anodic work function on the performance of organic solar cells. Chemphyschem 3:795–799

    Google Scholar 

  115. Brunetti F, Gong X, Tong M, Heeger A, Wudl F (2010) Strain and Hückel aromaticity: driving forces for a promising new generation of electron acceptors in organic electronics. Angew Chem 122:542–546

    Google Scholar 

  116. Mammo W, Admassie S, Gadisa A, Zhang F, Inganas O, Andersson MR (2007) New low band gap alternating polyfluorene copolymer-based photovoltaic cells. Sol Energ Mat Sol C 91:1010–1018

    Google Scholar 

  117. Liang Y, Wu Y, Feng D, Tsai S-T, Son H-J, Li G, Yu L (2009) Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc 131:56–57

    Google Scholar 

  118. Wynands D, Levichkova M, Riede M, Pfeiffer M, Baeuerle P, Rentenberger R, Denner P, Leo K (2010) Correlation between morphology and performance of low bandgap oligothiophene:C60 mixed heterojunctions in organic solar cells. J Appl Phys 107:014517–014523

    Google Scholar 

Books and Reviews

  • Andre Moliton A (2006) Optoelectronics of molecules and polymers. Springer, Berlin

    Google Scholar 

  • Brabec C, Dyakonov V, Parisi V, Sariciftci NS (eds) (2003) Organic photovoltaics. Springer, Berlin

    Google Scholar 

  • Brabec C, Dyakonov V, Scherf U (eds) (2008) Organic photovoltaics. Wiley VCH, Weinheim

    Google Scholar 

  • Dennler G, Sariciftci NS, Brabec CJ (2007) Conjugated polymer based organic solar cells. In: Hadziioannou G, Mallarias GG (eds) Semiconducing polymers, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Mozer AJ, Sariciftci NS (2007) Conjugated polymer-based photovoltaic devices. In: Skotheim T, Reynolds JR (eds) Handbook of conducting polymers, 3rd edn. CRC Press/Taylor and Francis Group, Boca Raton, Florida

    Google Scholar 

  • Nalwa HS (ed) (1997) Handbook of organic and conductive molecules and polymers. Wiley, Chichester, UK

    Google Scholar 

  • Sun SS, Dalton L (eds) (2008) Introduction to organic electronic and optoelectronic materials and devices. Taylor and Francis, Boca Raton

    Google Scholar 

  • Sun SS, Sariciftci NS (eds) (2005) Organic photovoltaics: mechanisms materials and devices. Taylor and Francis, Boca Raton

    Google Scholar 

  • Würfel P (2005) Physics of solar cells. Wiley VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Daniel Głowacki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Głowacki, E.D., Sariciftci, N.S., Tang, C.W. (2013). Organic Solar Cells . In: Richter, C., Lincot, D., Gueymard, C.A. (eds) Solar Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5806-7_466

Download citation

Publish with us

Policies and ethics