Solar Energy

2013 Edition
| Editors: Christoph Richter, Daniel Lincot, Christian A. Gueymard

Mesoscopic Solar Cells

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-5806-7_465

Introduction

Perhaps, the largest challenge for our global society is to find ways to replace the slowly but inevitably vanishing fossil fuel supplies by renewable resources. The problem is compounded by an increase in the worldwide consumption of energy, which is expected to double within the next 40 years from the current level of 500 exajoules/year (exa = 10 18) to 1,000 exajoules/year. This additional demand cannot be met by accelerated combustion of fossil fuels , which would entail enhanced environmental pollution and global warming, leave alone the fact that oil production has already peaked and will decline in the future (Fig. 1). Furthermore, the current ongoing disaster at the Fukushima reactor site in Japan along with previous major accidents has exposed to the world the risks and limitations of nuclear energy use, leave alone that the issue of where to store nuclear waste over ten thousands of years in a safe manner and at what cost remains unresolved to date.
This is a preview of subscription content, log in to check access

Notes

Acknowledgment

I am grateful to my coworkers and for the support by the organizations listed below. Swiss CTI, CCEM-CH, Swiss National Science Foundation, Swiss Energy Office, US Air Force (European Office of Aerospace Research and Development), FP7 European Joule Program. European Research Council (Advanced Research Grant) GRL Korea (with KRICT) KAUST Center for Advanced Molecular Photovoltaics (CAMP) at Stanford University, Industrial Partners.

Bibliography

  1. 1.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  2. 2.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663CrossRefGoogle Scholar
  3. 3.
    McLeskey JT Jr, Qiao Q (2010) Nanostructured organic solar cells. Nanotechology for Photovoltaics, Loucas Tsakalakos Editor CRC Press 147–185Google Scholar
  4. 4.
    Zhang W, Cheng Y, Yin X, Liu B (2011) Solid-state dye – sensitized solar cells with conjugated polymers as hole-transporting materials. Macromol Chem Phys 212:15–23CrossRefGoogle Scholar
  5. 5.
    Mathews N, Varghese B, Sun C, Thavasi V, Andreasson B-P, Sow Ch-H, Ramakrishna S, Mhaisalkar S-G (2010) Oxide nanowire networks and their electronic and optoelectronic characteristics. Nanoscale 2:1984–1998CrossRefGoogle Scholar
  6. 6.
    Sekar N, Gehlot VY (2010) Metal complex dyes for dye – sensitized solar cells: recent developments. Resonance 15:819–831CrossRefGoogle Scholar
  7. 7.
    Ning Z, Fu Y, Tian H (2010) Improvement of dye – sensitized solar cells: what we know and what we need to know. Energy Environ Sci 3:1170–1181CrossRefGoogle Scholar
  8. 8.
    Rowley JG, Farnum BH, Ardo S, Meyer GJ (2010) Iodide chemistry in dye – sensitized solar cells: making and breaking I-I bonds for solar energy conversion. J Phys Chem Lett 1:3132–3140CrossRefGoogle Scholar
  9. 9.
    Halme J, Vahermaa P, Miettunen K, Lund P (2010) Device physics of dye solar cells. Adv Mat 22:E210–E234CrossRefGoogle Scholar
  10. 10.
    Wang L, Fang X, Zhang Z (2010) Design methods for large scale dye – sensitized solar modules and the progress of stability research. Renew Sustain En Rev 14:3178–3184CrossRefGoogle Scholar
  11. 11.
    Ma BB, Gao R, Wang L-D, Zhu Y-F, Shi Y-T, Geng Y, Dong H-P, Qiu Y (2010) Recent progress in interface modification for dye – sensitized solar cells. Science China: Chem 53:1669–1678CrossRefGoogle Scholar
  12. 12.
    Ruehle S, Shalom M, Zaban A (2010) Quantum-dot- sensitized solar cells. Chemphyschem 11:2290–2304CrossRefGoogle Scholar
  13. 13.
    Woehrle D, Hild O-R (2010) Energy of the future. Organic solar cells. Chem Unserer Zeit 44:174–189CrossRefGoogle Scholar
  14. 14.
    Li X, Wang H, Wu H (2010) Phthalocyanines and their analogs applied in dye – sensitized solar cell. Struct Bond 135:229–274CrossRefGoogle Scholar
  15. 15.
    Caramori S, Cristino V, Boaretto R, Argazzi R, Bignozzi C-A, Di Carlo A (2010) New components for dye – sensitized solar cells. Int J Photoenergy 1–17Google Scholar
  16. 16.
    Uzaki K, Nishimura T, Usagawa J, Hayase S, Kono M, Yamaguchi Y (2010) Dye – sensitized solar cells consisting of 3D-electrodes – a review: aiming at high efficiency from the view point of light harvesting and charge collection. J Solar Energy Eng 132:021204CrossRefGoogle Scholar
  17. 17.
    Park N-G (2010) Dye – sensitized metal oxide nanostructures and their photoelectrochemical properties. J Korean Electrochem Soc 13:10–18CrossRefGoogle Scholar
  18. 18.
    Aguilar RH, Sommeling PM, Kroon JM, Mendes A, Costa CAV (2009) Dye – sensitized solar cells: novel concepts, materials, and state-of-the-art performances. Int J Green Energy 6(3):245–256CrossRefGoogle Scholar
  19. 19.
    Desilvestro J (2009) Durability assessment of dye solar cells and modules. In: Miyasaka T (ed) Shin konseputo taiyo denchi to seizo purosesu. Shiemushishuppan, Tokyo, pp 196–205Google Scholar
  20. 20.
    Arakawa H (2009) Weathering resistance of dye – sensitized solar cells. In: Miyasaka T (ed) Shin konseputo taiyo denchi to seizo purosesu. Shiemushishuppan, Tokyo, pp 185–195Google Scholar
  21. 21.
    Yanagida S, Yu Y, Manseki K (2009) Iodine/iodide-free dye-sensitized solar cells. Acc Chem Res 42:1827–1838CrossRefGoogle Scholar
  22. 22.
    Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788–1798CrossRefGoogle Scholar
  23. 23.
    Kalyanasundaram K (2010) Dye-sensitized solar cells. EPFL Press, Lausanne (distributor CRC Press, Boca Raton USA)Google Scholar
  24. 24.
    Desilvestro J, Grätzel M, Kavan L, Moser JE, Augustynski J (1985) Highly efficient sensitization of titanium dioxide. J Am Chem Soc 107:2988–2990CrossRefGoogle Scholar
  25. 25.
    Vlachopoulos N, Liska P, Augustynski J, Grätzel M (1988) Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. J Am Chem Soc 110:1216–1220CrossRefGoogle Scholar
  26. 26.
    O’Regan B, Grätzel M (1991) A low-cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 335:737–740CrossRefGoogle Scholar
  27. 27.
    Nazeeruddin MK, Kay A, Rodicio I, Humphrey-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge transfer sensitizer (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390CrossRefGoogle Scholar
  28. 28.
    Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzert H, Grätzel M (1998) Solid state dye sensitized cell showing high photon to current conversion efficiencies. Nature 395:550CrossRefGoogle Scholar
  29. 29.
    Qin P, Linder M, Brinck T, Boschloo G, Hagfeldt A, Sun L (2009) High incident photon-to-current conversion efficiency of p-Type dye-sensitized solar cells based on NiO and organic chromophores. Adv Mat 21:1–4Google Scholar
  30. 30.
    Nusbaumer H, Zakeeruddin SM, Moser J-E, Grätzel M (2003) An alternative efficient redox couple for the dye-sensitized solar cell system. Chem Eur J 9:3756–3763Google Scholar
  31. 31.
    Brugnati M, Caramori S, Cazzanti S, Marchini L, Argazzi R, Bignozzi CA (2007) New components for dye-sensitized solar cells. Int J Photoenergy 2:80756/1–80756/10Google Scholar
  32. 32.
    Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt AJ (2010) Design of organic dyes and cobalt polypyridine redox mediators for high efficiency dye-sensitized solar cells. Am Chem Soc 132:16714–16724CrossRefGoogle Scholar
  33. 33.
    Zhang Z, Chen P, Murakami TN, Zakeeruddin SM, Grätzel M (2008) The 2,2,6,6-Tetramethyl-1-piperidinyloxy radical: an efficient, iodine-free redox mediator for dye-sensitized solar cells. Adv Funct Mat 18:341–346CrossRefGoogle Scholar
  34. 34.
    Wang M, Chamberland N, Breau L, Moser J-E, Humphry-Baker R, Marsan B, Zakeeruddin S-M, Grätzel M (2010) An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat Chem 2:385–389CrossRefGoogle Scholar
  35. 35.
    Li DM, Li H, Luo YH, Li KX, Meng QB, Armand M, Chen LQ (2010) Non-corrosive, non-absorbing organic redox couple for dye-sensitized solar cells. Adv Funct Mater 20(19):3358CrossRefGoogle Scholar
  36. 36.
    Daeneke T, Kwon TH, Holmes AB, Duffy NW, Bach U, Spiccia L (2011) High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat Chem 3:211–215Google Scholar
  37. 37.
    Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624CrossRefGoogle Scholar
  38. 38.
    Rothenberger G, Comte P, Grätzel M (1999) A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol En Mat Sol Cells 58:321–336CrossRefGoogle Scholar
  39. 39.
    Zukalová M, Procházka J, Zukal A, Yum JH, Kavan L, Grätzel M (2010) Organized mesoporous TiO2 films stabilized by phosphorus: application for dye-sensitized solar cells. J Electrochem Soc 157:H99–H103CrossRefGoogle Scholar
  40. 40.
    Galoppini E, Rochford J, Chen H, Saraf G, Lu Y, Hagfeldt A, Boschloo G (2006) Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B 110:16159–16161CrossRefGoogle Scholar
  41. 41.
    Shankar K, Bandara J, Paulose M, Wietasch H, Varghese OK, Mor GK, LaTempa TJ, Thelakkat M, Grimes CA (2008) Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett 8:1654–1659CrossRefGoogle Scholar
  42. 42.
    Macak JM, Ghicov A, Hahn R, Tsuchiya H, Schmuki P (2006) Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses. J Mat Res 21:2824–2828CrossRefGoogle Scholar
  43. 43.
    Nelson J, Chandler RE (2004) Random walk models of charge transfer and transport in dye sensitized systems. Coord Chem Rev 248:1181–1194CrossRefGoogle Scholar
  44. 44.
    Colodrero S, Mihi A, Haggman L, Ocana M, Boschloo G, Hagfeldt A, Miguez H (2009) Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Adv Mat 21:764–770CrossRefGoogle Scholar
  45. 45.
    Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Dye sensitized solar cells with conversion efficiency of 11.1%. Jap J Appl Phys Part 2(45):24–28Google Scholar
  46. 46.
    Uchida S (2011) Invited lecture presented at the symposium on nanostructured photosystems at the NTU Singapore symposium on July 26Google Scholar
  47. 47.
    Wang Q, Ito S, Graetzel M, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110:25210–25221CrossRefGoogle Scholar
  48. 48.
    Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M (2012) High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energ Environ Sci. Accepted paper. DOI:10.1039/c0xx00000xGoogle Scholar
  49. 49.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MdK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634CrossRefGoogle Scholar
  50. 50.
    Liska P, Thampi R, Grätzel M, Brémaud D, Rudmann D, Upadhyaya HM, Tiwari AN (2006) Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency. Appl Phys Lett 88:203103CrossRefGoogle Scholar
  51. 51.
    Barber GD, Hoertz PG, Lee S-HA, Abrams NM, Mikulca J, Mallouk TE, Liska P, Zakeeruddin SM, Grätzel M, Ho-Baillie A, Green MA (2011) Utilization of direct and diffuse sunlight in a dye-sensitized solar cell — silicon photovoltaic hybrid concentrator system. J Phys Chem Lett 2:581–585CrossRefGoogle Scholar
  52. 52.
    Ito S, Murakami TN, Comte P, Liska P, Gratzel C, Nazeeruddin MK, Gratzel M (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619CrossRefGoogle Scholar
  53. 53.
    Späth M, Sommeling PM, van Roosmalen JAM et al (2003) Reproducible manufacturing of dye-sensitized solar cells on a semi-automated baseline. Progr Photovoltaics: Res Appl 11:207–220CrossRefGoogle Scholar
  54. 54.
    Green MA, Emery K, Hishikawa Y, Warta W (2011) Solar effciency tables (Version 37) Prog. Photovolt: Res. Appl. 19:84–92Google Scholar
  55. 55.
    Lenzmann FO, Kroon JM (2007) Recent advances in dye-sensitized solar cells. Adv Opto-Electr (Recent Advances in Solar Cells) 65073/1–65073/10Google Scholar
  56. 56.
    Grätzel M (2008) Recent applications of nanoscale materials: solar cells. In: Leite RE (ed) Nanostructured materials for electrochemical energy production and storage. Springer, New York, Chapter 1Google Scholar
  57. 57.
    Grätzel M (2006) Photovoltaic performance and long-term stability of dye-sensitized mesocopic solar cells. C. R. Chimie 9:578–583CrossRefGoogle Scholar
  58. 58.
    Arakawa H, Yamaguchi T, Okada K, Matsui K, Kitamura T, Tanabe N (2009) Highly durable dye-sensitized solar cells. Fujikura Tech Rev 2009:55–59Google Scholar
  59. 59.
    Harikisun R, Desilvestro H (2011) Long-term stability of dye solar cells. Sol Energ 85:1179–1188CrossRefGoogle Scholar
  60. 60.
  61. 61.
    De Wild-Scholten MJ, Veltkamp AC (2007) Environmental life cycle analysis of dye sensitized solar devices. www.ecn.nl/publicaties/PdfFetch.aspx?nr=ECN-M--07-081
  62. 62.
    Sauvage F, Chen D, Comte P, Huang F, Heiniger L-P, Cheng Y-B, Caruso RA, Grätzel M (2010) Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4(8):4420–4425CrossRefGoogle Scholar
  63. 63.
    Chen D, Cao L, Huang F, Imperia P, Cheng Y-B, Caruso RA (2010) Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14–23 nm). J Am Chem Soc 132(12):4438–4444CrossRefGoogle Scholar
  64. 64.
    Huang F, Chen D, Zhang X-L, Caruso RA, Cheng Y-B (2010) Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv Funct Mat 20(8):1301–1305CrossRefGoogle Scholar
  65. 65.
    Qin H, Wenger S, Xu M, Gao F, Jing X, Wang P, Zakeeruddin S-M, Grätzel M (2008) An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. J Am Chem Soc 130(29):9202–9203CrossRefGoogle Scholar
  66. 66.
    Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Gratzel M (2008) High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Comm 41:5194–5196CrossRefGoogle Scholar
  67. 67.
    Yum J-H, Hagberg DP, Moon S-J, Karlsson KM, Marinado T, Sun L, Hagfeldt A, Nazeeruddin MK, Grätzel M (2009) A light-resistant organic sensitizer for solar-cell applications. Angew Chem Int Ed 48:1576–1580CrossRefGoogle Scholar
  68. 68.
    Zhang G, Bala H, Cheng Y, Shi D, Lv X, Yu Q, Wang P (2009) High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chem Comm 2198–2200Google Scholar
  69. 69.
    Hsieh C-P, Lu H-P, Chiu C-L, Lee C-W, Chuang S-H, Mai C-L, Yen W-N, Hsu S-J, Diau EW-G, Yeh C-Y (2010) Synthesis and characterization of porphyrin sensitizers. J Mater Chem 20:1127CrossRefGoogle Scholar
  70. 70.
    Bessho T, Zakeeruddin SM, Yeh C-Y, Diau EWG, Grätzel M (2010) Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew Chem Int Ed 49:6646–6649CrossRefGoogle Scholar
  71. 71.
    Rhee YM, Head-Gordon M (2007) Scaled second-order perturbation corrections to configuration interaction singles: efficient and reliable excitation energy methods. J Phys Chem A 111:5314–5326CrossRefGoogle Scholar
  72. 72.
    Casanova D, Rotzinger FP, Grätzel M (2010) Computational study of promising organic dyes for high-performance sensitized solar cells. J Chem Theory Comput 6:1219–1227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratory of Photonics and Interfaces, Institute of Chemical Science and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland