Skip to main content

Mesoscopic Solar Cells

  • Reference work entry
  • First Online:

Introduction

Perhaps, the largest challenge for our global society is to find ways to replace the slowly but inevitably vanishing fossil fuel supplies by renewable resources. The problem is compounded by an increase in the worldwide consumption of energy, which is expected to double within the next 40 years from the current level of 500 exajoules/year (exa = 1018) to 1,000 exajoules/year. This additional demand cannot be met by accelerated combustion of fossil fuels , which would entail enhanced environmental pollution and global warming, leave alone the fact that oil production has already peaked and will decline in the future (Fig. 1). Furthermore, the current ongoing disaster at the Fukushima reactor site in Japan along with previous major accidents has exposed to the world the risks and limitations of nuclear energy use, leave alone that the issue of where to store nuclear waste over ten thousands of years in a safe manner and at what cost remains unresolved to date.

Mesoscopic...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AM1.5:

Air mass 1.5: Defines position of the sun where the path through the atmosphere is 1.5 longer than at a vertical incidence.

Fill factor of the cell:

Maximum power output of the cell divided by the product of open circuit photo-voltage (Voc) times the short circuit photocurrent density.

IPCE:

Incident photon to electric current conversion efficiency, presents the ratio of the electric current generated by monochromatic light of a certain wavelength over the incident photon flux.

Mesoscopic:

Size domain between 2 and 50 nm.

Power conversion efficiency (PCE):

the maximal electric power generated by the photovoltaic cell divided by the incident solar light intensity under AM 1.5 standard reporting conditions (Intensity of the sunlight 1000W/m2 and T= 298 K).

Sensitizer:

Dye molecule generating electric charges from sunlight.

Bibliography

  1. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  2. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    Article  Google Scholar 

  3. McLeskey JT Jr, Qiao Q (2010) Nanostructured organic solar cells. Nanotechology for Photovoltaics, Loucas Tsakalakos Editor CRC Press 147–185

    Google Scholar 

  4. Zhang W, Cheng Y, Yin X, Liu B (2011) Solid-state dye – sensitized solar cells with conjugated polymers as hole-transporting materials. Macromol Chem Phys 212:15–23

    Article  Google Scholar 

  5. Mathews N, Varghese B, Sun C, Thavasi V, Andreasson B-P, Sow Ch-H, Ramakrishna S, Mhaisalkar S-G (2010) Oxide nanowire networks and their electronic and optoelectronic characteristics. Nanoscale 2:1984–1998

    Article  Google Scholar 

  6. Sekar N, Gehlot VY (2010) Metal complex dyes for dye – sensitized solar cells: recent developments. Resonance 15:819–831

    Article  Google Scholar 

  7. Ning Z, Fu Y, Tian H (2010) Improvement of dye – sensitized solar cells: what we know and what we need to know. Energy Environ Sci 3:1170–1181

    Article  Google Scholar 

  8. Rowley JG, Farnum BH, Ardo S, Meyer GJ (2010) Iodide chemistry in dye – sensitized solar cells: making and breaking I-I bonds for solar energy conversion. J Phys Chem Lett 1:3132–3140

    Article  Google Scholar 

  9. Halme J, Vahermaa P, Miettunen K, Lund P (2010) Device physics of dye solar cells. Adv Mat 22:E210–E234

    Article  Google Scholar 

  10. Wang L, Fang X, Zhang Z (2010) Design methods for large scale dye – sensitized solar modules and the progress of stability research. Renew Sustain En Rev 14:3178–3184

    Article  Google Scholar 

  11. Ma BB, Gao R, Wang L-D, Zhu Y-F, Shi Y-T, Geng Y, Dong H-P, Qiu Y (2010) Recent progress in interface modification for dye – sensitized solar cells. Science China: Chem 53:1669–1678

    Article  Google Scholar 

  12. Ruehle S, Shalom M, Zaban A (2010) Quantum-dot- sensitized solar cells. Chemphyschem 11:2290–2304

    Article  Google Scholar 

  13. Woehrle D, Hild O-R (2010) Energy of the future. Organic solar cells. Chem Unserer Zeit 44:174–189

    Article  Google Scholar 

  14. Li X, Wang H, Wu H (2010) Phthalocyanines and their analogs applied in dye – sensitized solar cell. Struct Bond 135:229–274

    Article  Google Scholar 

  15. Caramori S, Cristino V, Boaretto R, Argazzi R, Bignozzi C-A, Di Carlo A (2010) New components for dye – sensitized solar cells. Int J Photoenergy 1–17

    Google Scholar 

  16. Uzaki K, Nishimura T, Usagawa J, Hayase S, Kono M, Yamaguchi Y (2010) Dye – sensitized solar cells consisting of 3D-electrodes – a review: aiming at high efficiency from the view point of light harvesting and charge collection. J Solar Energy Eng 132:021204

    Article  Google Scholar 

  17. Park N-G (2010) Dye – sensitized metal oxide nanostructures and their photoelectrochemical properties. J Korean Electrochem Soc 13:10–18

    Article  Google Scholar 

  18. Aguilar RH, Sommeling PM, Kroon JM, Mendes A, Costa CAV (2009) Dye – sensitized solar cells: novel concepts, materials, and state-of-the-art performances. Int J Green Energy 6(3):245–256

    Article  Google Scholar 

  19. Desilvestro J (2009) Durability assessment of dye solar cells and modules. In: Miyasaka T (ed) Shin konseputo taiyo denchi to seizo purosesu. Shiemushishuppan, Tokyo, pp 196–205

    Google Scholar 

  20. Arakawa H (2009) Weathering resistance of dye – sensitized solar cells. In: Miyasaka T (ed) Shin konseputo taiyo denchi to seizo purosesu. Shiemushishuppan, Tokyo, pp 185–195

    Google Scholar 

  21. Yanagida S, Yu Y, Manseki K (2009) Iodine/iodide-free dye-sensitized solar cells. Acc Chem Res 42:1827–1838

    Article  Google Scholar 

  22. Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788–1798

    Article  Google Scholar 

  23. Kalyanasundaram K (2010) Dye-sensitized solar cells. EPFL Press, Lausanne (distributor CRC Press, Boca Raton USA)

    Google Scholar 

  24. Desilvestro J, Grätzel M, Kavan L, Moser JE, Augustynski J (1985) Highly efficient sensitization of titanium dioxide. J Am Chem Soc 107:2988–2990

    Article  Google Scholar 

  25. Vlachopoulos N, Liska P, Augustynski J, Grätzel M (1988) Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. J Am Chem Soc 110:1216–1220

    Article  Google Scholar 

  26. O’Regan B, Grätzel M (1991) A low-cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 335:737–740

    Article  Google Scholar 

  27. Nazeeruddin MK, Kay A, Rodicio I, Humphrey-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge transfer sensitizer (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390

    Article  Google Scholar 

  28. Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzert H, Grätzel M (1998) Solid state dye sensitized cell showing high photon to current conversion efficiencies. Nature 395:550

    Article  Google Scholar 

  29. Qin P, Linder M, Brinck T, Boschloo G, Hagfeldt A, Sun L (2009) High incident photon-to-current conversion efficiency of p-Type dye-sensitized solar cells based on NiO and organic chromophores. Adv Mat 21:1–4

    Google Scholar 

  30. Nusbaumer H, Zakeeruddin SM, Moser J-E, Grätzel M (2003) An alternative efficient redox couple for the dye-sensitized solar cell system. Chem Eur J 9:3756–3763

    Google Scholar 

  31. Brugnati M, Caramori S, Cazzanti S, Marchini L, Argazzi R, Bignozzi CA (2007) New components for dye-sensitized solar cells. Int J Photoenergy 2:80756/1–80756/10

    Google Scholar 

  32. Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt AJ (2010) Design of organic dyes and cobalt polypyridine redox mediators for high efficiency dye-sensitized solar cells. Am Chem Soc 132:16714–16724

    Article  Google Scholar 

  33. Zhang Z, Chen P, Murakami TN, Zakeeruddin SM, Grätzel M (2008) The 2,2,6,6-Tetramethyl-1-piperidinyloxy radical: an efficient, iodine-free redox mediator for dye-sensitized solar cells. Adv Funct Mat 18:341–346

    Article  Google Scholar 

  34. Wang M, Chamberland N, Breau L, Moser J-E, Humphry-Baker R, Marsan B, Zakeeruddin S-M, Grätzel M (2010) An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat Chem 2:385–389

    Article  Google Scholar 

  35. Li DM, Li H, Luo YH, Li KX, Meng QB, Armand M, Chen LQ (2010) Non-corrosive, non-absorbing organic redox couple for dye-sensitized solar cells. Adv Funct Mater 20(19):3358

    Article  Google Scholar 

  36. Daeneke T, Kwon TH, Holmes AB, Duffy NW, Bach U, Spiccia L (2011) High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat Chem 3:211–215

    Google Scholar 

  37. Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624

    Article  Google Scholar 

  38. Rothenberger G, Comte P, Grätzel M (1999) A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol En Mat Sol Cells 58:321–336

    Article  Google Scholar 

  39. Zukalová M, Procházka J, Zukal A, Yum JH, Kavan L, Grätzel M (2010) Organized mesoporous TiO2 films stabilized by phosphorus: application for dye-sensitized solar cells. J Electrochem Soc 157:H99–H103

    Article  Google Scholar 

  40. Galoppini E, Rochford J, Chen H, Saraf G, Lu Y, Hagfeldt A, Boschloo G (2006) Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B 110:16159–16161

    Article  Google Scholar 

  41. Shankar K, Bandara J, Paulose M, Wietasch H, Varghese OK, Mor GK, LaTempa TJ, Thelakkat M, Grimes CA (2008) Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett 8:1654–1659

    Article  Google Scholar 

  42. Macak JM, Ghicov A, Hahn R, Tsuchiya H, Schmuki P (2006) Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses. J Mat Res 21:2824–2828

    Article  Google Scholar 

  43. Nelson J, Chandler RE (2004) Random walk models of charge transfer and transport in dye sensitized systems. Coord Chem Rev 248:1181–1194

    Article  Google Scholar 

  44. Colodrero S, Mihi A, Haggman L, Ocana M, Boschloo G, Hagfeldt A, Miguez H (2009) Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Adv Mat 21:764–770

    Article  Google Scholar 

  45. Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Dye sensitized solar cells with conversion efficiency of 11.1%. Jap J Appl Phys Part 2(45):24–28

    Google Scholar 

  46. Uchida S (2011) Invited lecture presented at the symposium on nanostructured photosystems at the NTU Singapore symposium on July 26

    Google Scholar 

  47. Wang Q, Ito S, Graetzel M, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110:25210–25221

    Article  Google Scholar 

  48. Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M (2012) High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energ Environ Sci. Accepted paper. DOI:10.1039/c0xx00000x

    Google Scholar 

  49. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MdK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Article  Google Scholar 

  50. Liska P, Thampi R, Grätzel M, Brémaud D, Rudmann D, Upadhyaya HM, Tiwari AN (2006) Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency. Appl Phys Lett 88:203103

    Article  Google Scholar 

  51. Barber GD, Hoertz PG, Lee S-HA, Abrams NM, Mikulca J, Mallouk TE, Liska P, Zakeeruddin SM, Grätzel M, Ho-Baillie A, Green MA (2011) Utilization of direct and diffuse sunlight in a dye-sensitized solar cell — silicon photovoltaic hybrid concentrator system. J Phys Chem Lett 2:581–585

    Article  Google Scholar 

  52. Ito S, Murakami TN, Comte P, Liska P, Gratzel C, Nazeeruddin MK, Gratzel M (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619

    Article  Google Scholar 

  53. Späth M, Sommeling PM, van Roosmalen JAM et al (2003) Reproducible manufacturing of dye-sensitized solar cells on a semi-automated baseline. Progr Photovoltaics: Res Appl 11:207–220

    Article  Google Scholar 

  54. Green MA, Emery K, Hishikawa Y, Warta W (2011) Solar effciency tables (Version 37) Prog. Photovolt: Res. Appl. 19:84–92

    Google Scholar 

  55. Lenzmann FO, Kroon JM (2007) Recent advances in dye-sensitized solar cells. Adv Opto-Electr (Recent Advances in Solar Cells) 65073/1–65073/10

    Google Scholar 

  56. Grätzel M (2008) Recent applications of nanoscale materials: solar cells. In: Leite RE (ed) Nanostructured materials for electrochemical energy production and storage. Springer, New York, Chapter 1

    Google Scholar 

  57. Grätzel M (2006) Photovoltaic performance and long-term stability of dye-sensitized mesocopic solar cells. C. R. Chimie 9:578–583

    Article  Google Scholar 

  58. Arakawa H, Yamaguchi T, Okada K, Matsui K, Kitamura T, Tanabe N (2009) Highly durable dye-sensitized solar cells. Fujikura Tech Rev 2009:55–59

    Google Scholar 

  59. Harikisun R, Desilvestro H (2011) Long-term stability of dye solar cells. Sol Energ 85:1179–1188

    Article  Google Scholar 

  60. http://3gsolar.com/NewsItem.aspx?ID=40

  61. De Wild-Scholten MJ, Veltkamp AC (2007) Environmental life cycle analysis of dye sensitized solar devices. www.ecn.nl/publicaties/PdfFetch.aspx?nr=ECN-M--07-081

  62. Sauvage F, Chen D, Comte P, Huang F, Heiniger L-P, Cheng Y-B, Caruso RA, Grätzel M (2010) Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4(8):4420–4425

    Article  Google Scholar 

  63. Chen D, Cao L, Huang F, Imperia P, Cheng Y-B, Caruso RA (2010) Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14–23 nm). J Am Chem Soc 132(12):4438–4444

    Article  Google Scholar 

  64. Huang F, Chen D, Zhang X-L, Caruso RA, Cheng Y-B (2010) Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv Funct Mat 20(8):1301–1305

    Article  Google Scholar 

  65. Qin H, Wenger S, Xu M, Gao F, Jing X, Wang P, Zakeeruddin S-M, Grätzel M (2008) An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. J Am Chem Soc 130(29):9202–9203

    Article  Google Scholar 

  66. Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Gratzel M (2008) High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Comm 41:5194–5196

    Article  Google Scholar 

  67. Yum J-H, Hagberg DP, Moon S-J, Karlsson KM, Marinado T, Sun L, Hagfeldt A, Nazeeruddin MK, Grätzel M (2009) A light-resistant organic sensitizer for solar-cell applications. Angew Chem Int Ed 48:1576–1580

    Article  Google Scholar 

  68. Zhang G, Bala H, Cheng Y, Shi D, Lv X, Yu Q, Wang P (2009) High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chem Comm 2198–2200

    Google Scholar 

  69. Hsieh C-P, Lu H-P, Chiu C-L, Lee C-W, Chuang S-H, Mai C-L, Yen W-N, Hsu S-J, Diau EW-G, Yeh C-Y (2010) Synthesis and characterization of porphyrin sensitizers. J Mater Chem 20:1127

    Article  Google Scholar 

  70. Bessho T, Zakeeruddin SM, Yeh C-Y, Diau EWG, Grätzel M (2010) Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew Chem Int Ed 49:6646–6649

    Article  Google Scholar 

  71. Rhee YM, Head-Gordon M (2007) Scaled second-order perturbation corrections to configuration interaction singles: efficient and reliable excitation energy methods. J Phys Chem A 111:5314–5326

    Article  Google Scholar 

  72. Casanova D, Rotzinger FP, Grätzel M (2010) Computational study of promising organic dyes for high-performance sensitized solar cells. J Chem Theory Comput 6:1219–1227

    Article  Google Scholar 

Download references

Acknowledgment

I am grateful to my coworkers and for the support by the organizations listed below. Swiss CTI, CCEM-CH, Swiss National Science Foundation, Swiss Energy Office, US Air Force (European Office of Aerospace Research and Development), FP7 European Joule Program. European Research Council (Advanced Research Grant) GRL Korea (with KRICT) KAUST Center for Advanced Molecular Photovoltaics (CAMP) at Stanford University, Industrial Partners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Grätzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Grätzel, M. (2013). Mesoscopic Solar Cells . In: Richter, C., Lincot, D., Gueymard, C.A. (eds) Solar Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5806-7_465

Download citation

Publish with us

Policies and ethics