Skip to main content

Avian Specific Transgenesis

  • Reference work entry
Sustainable Food Production
  • 3486 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Founder bird (F0):

A bird into which a genetic vector was introduced. This vector may become incorporated into the chromosomes of some of the somatic and germ cells of the bird.

F1 bird:

The offspring of the F0 bird. Transgenic F1 birds will contain the transgene incorporated into a chromosome in every cell of the animal.

Germ line chimera:

A genetically modified founder bird (F0) in which the introduced biological material (i.e., DNA, virus, cells) has contributed to cells of the germ cell lineage of the host animal.

Primordial germ cells:

Cells in the developing embryo belonging to the germ cell lineage at a developmental stage before any sexual differentiation has occurred. These primitive germ cells may be located in the embryo in tissues other than the forming gonad.

Retrovirus:

A virus that carries its genome as an RNA molecule. After infecting a cell, the RNA is reverse transcribed into a DNA molecule that is inserted into the genome of the infected cell at which point it is referred to as a provirus. The provirus is passed to all daughter cells as part of the host cell’s genome.

Recombinant proteins:

A protein produced using recombinant DNA technology. The DNA sequence encoding the protein of interest is artificially constructed using genetic engineering and the protein is produced by inserting the DNA along with DNA regulatory regions into a bacterium, a eukaryotic cell, or an animal.

Transgenic bird:

Any avian species in which part of its genetic component contains DNA deriving from an exogenous source, or that the genome of the bird has been altered by human intervention.

Transgenic bird lines:

A flock of birds deriving from a F1 bird containing a transgenic modification at a defined genetic locus.

Bibliography

Primary Literature

  1. Houdebine L-M (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32:2107–2121

    Google Scholar 

  2. Lillico SG, McGrew MJ, Sherman A, Sang HM (2005) Transgenic chickens as bioreactors for protein-based drugs. Drug Discov Today 10:3191–3196

    Article  CAS  Google Scholar 

  3. Council for Agricultural Science and Technology (CAST) (2007) The role of transgenic livestock in the treatment of human disease. Issue Paper 35. CAST, Ames

    Google Scholar 

  4. Raju TS, Briggs JB, Borge SM, Jones AJS (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialyation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10:477–486

    Article  PubMed  CAS  Google Scholar 

  5. Rapp JC, Harvey AJ, Speksnijder GL, Hu W, Ivarie R (2003) Biologically active human interferon alpha-2b produced in the egg white of transgenic hens. Transgenic Res 12:569–575

    Article  PubMed  CAS  Google Scholar 

  6. Lillico SG, Sherman A, McGrew MJ, Robertson CD, Smith J, Haslam C, Barnard P, Radcliffe PA, Mitrophanous KA, Elliot EA, Sang HM (2007) Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci USA 104:1771–1776

    Article  PubMed  CAS  Google Scholar 

  7. Koo BC, Kwon MS, Lee H, Kim M, Kim D, Roh JY, Park YY, Cui XS, Kim NH, Byun SJ, Kim T (2010) Tetracycline-dependent expression of the human erythropoietin gene in transgenic chickens. Transgenic Res 19(3):437–447

    Article  PubMed  CAS  Google Scholar 

  8. Stern CD (2005) The chick: a great model system becomes even greater. Dev Cell 8:9–17

    PubMed  CAS  Google Scholar 

  9. Chapman SC, Lawson A, Macarthur WC, Wiese RJ, Loechel RH, Burgos-Trinidad M, Wakefield JK, Ramabhadran R, Mauch TJ, Schoenwolf GC (2005) Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development 132:935–940

    Article  PubMed  CAS  Google Scholar 

  10. McGrew MJ, Sherman A, Lillico SG, Ellard FM, Radcliffe PA, Gilhooley HJ, Mitrophanous KA, Cambray N, Wilson V, Sang H (2008) Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development 135:2289–2299

    Article  PubMed  CAS  Google Scholar 

  11. Zhao D, McBride D, Nandi S, McQueen HA, McGrew MJ, Hocking PM, Lewis PD, Sang HM, Clinton M (2010) Somatic sex identity is cell-autonomous in the chicken. Nature 464:237–242

    Article  PubMed  CAS  Google Scholar 

  12. Council for Agricultural Science and Technology (CAST) (2009) Animal productivity and genetic diversity: cloned and transgenic animals. Issue Paper 43. CAST, Ames

    Google Scholar 

  13. Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard DW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745

    Article  PubMed  CAS  Google Scholar 

  14. Cho J, Choi K, Darden T, Reynolds PR, Petitte JN, Shears SB (2006) Avian multiple inositol polyphosphate phosphatase is an active phytase that can be engineered to help ameliorate the planet’s “phosphate crisis”. J Biotechnol 126:248–259

    Article  PubMed  CAS  Google Scholar 

  15. Tiensin T, Chaitaweesub P, Songserm T, Chaisingh A, Hoonsuwan W et al (2005) Highly pathogenic avian influenza H5N1, Thailand, 2004. Emerg Infect Dis 11:1664–1672

    Article  PubMed  Google Scholar 

  16. Wall RJ, Powell A, Paape MJ, Kerr DA, Bannermann SS, Pursel CG, Well KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451

    Article  PubMed  CAS  Google Scholar 

  17. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384

    Article  PubMed  CAS  Google Scholar 

  18. Hammer RE, Pursel VG, Rexroad CE, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    Article  PubMed  CAS  Google Scholar 

  19. Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344:541–544

    Article  PubMed  CAS  Google Scholar 

  20. Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, Kooiman P, Kootwijk E, Platenburg G, Pieper F, Strijker R, de Boer H (1991) Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology (N Y) 9:844–847

    Article  CAS  Google Scholar 

  21. Kochav S, Ginsburg M, Eyal-Giladi H (1980) From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. II. Microscopic anatomy and cell population dynamics. Dev Biol 79:296–308

    Article  PubMed  CAS  Google Scholar 

  22. Perry MM (1988) A complete culture system for the chick embryo. Nature 331:70–72

    Article  PubMed  CAS  Google Scholar 

  23. Love J, Gribbin C, Mather C, Sang H (1994) Transgenic birds by DNA microinjection. Biotechnology 12:60–63

    Article  PubMed  CAS  Google Scholar 

  24. Naito M, Sasaki E, Ohtaki M, Sakurai M (1994) Introduction of exogenous DNA into somatic and germ cells of chickens by microinjection into the germinal disc of fertilized ova. Mol Reprod Dev 37:167–171

    Article  PubMed  CAS  Google Scholar 

  25. Salter DW, Smith EJ, Hughes SH, Wright SE, Fadly AM, Witter RL, Crittenden LB (1986) Gene insertion into the chicken germ line by retroviruses. Poult Sci 65:1445–1458

    Article  PubMed  CAS  Google Scholar 

  26. Salter DW, Smith EJ, Hughes SH, Wright SE, Crittenden LB (1987) Transgenic chickens: insertion of retroviral genes into the chicken germ line. Virology 157:236–240

    Article  PubMed  CAS  Google Scholar 

  27. Chen HY, Garber EA, Mills E, Smith J, Kopchick JJ, DiLella AG, Smith RG (1990) Vectors, promoters, and expression of genes in chick embryos. J Reprod Fertil Suppl 41:173–1782

    PubMed  CAS  Google Scholar 

  28. U.S. Food and Drug Administration (2009) Guidance for industry #187: regulation of genetically engineered animals containing heritable recombinant DNA constructs. Final Guidance

    Google Scholar 

  29. Romano G, Marino IR, Pentimalli F, Adamo V, Giordano A (2009) Insertional mutagenesis and development of malignancies induced by integrating gene delivery systems: implications for the design of safer gene-based interventions in patients. Drug News Perspect 22:185–196

    Article  PubMed  CAS  Google Scholar 

  30. Jahner D, Stuhlmann H, Stewart CL, Harbers K, Lohler J, Simon I, Jaenisch R (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628

    Article  PubMed  CAS  Google Scholar 

  31. Pannell D, Ellis J (2001) Silencing of gene expression: implications for design of retrovirus vectors. Rev Med Virol 11:205–217

    Article  PubMed  CAS  Google Scholar 

  32. Bosselman RA, Hsu R-Y, Boggs T, Hu S, Bruszewski J, Ou S, Kozar L, Martin F, Green C, Jacobsen F, Nicolson M, Schultz JA, Semon KM, Rishell W, Stewart RG (1989) Germline transmission of exogenous genes in the chicken. Science 243:533–535

    Article  PubMed  CAS  Google Scholar 

  33. Thoraval P, Afanassieff M, Cosset FL, Lasserre F, Verdier G, Coudert F, Dambrine G (1995) Germline transmission of exogenous genes in chickens using helper-free ecotropic avian leukosis virus-based vectors. Transgenic Res 4:369–377

    Article  PubMed  CAS  Google Scholar 

  34. Harvey AJ, Speksnijder G, Baugh LR, Morris JA, Ivarie R (2002) Expression of exogenous protein in the egg white of transgenic chickens. Nat Biotechnol 20:396–399

    Article  PubMed  CAS  Google Scholar 

  35. Mozdziak PE, Borwornpinyo S, McCoy DW, Petitte JN (2003) Development of transgenic chickens expressing bacterial beta-galactosidase. Dev Dyn 226:439–445

    Article  PubMed  CAS  Google Scholar 

  36. Kwon MS, Koo BC, Choi BR, Park YY, Lee YM, Suh HS, Park YS, Lee HT, Kim JH, Roh JY, Kim NH, Kim T (2008) Generation of transgenic chickens that produce bioactive human granulocyte-colony stimulating factor. Mol Reprod Dev 75:1120–1126

    Article  PubMed  CAS  Google Scholar 

  37. Mizuarai S, Ono K, Yamaguchi K, Nishijima K, Kamihara M, Iijima S (2001) Production of transgenic quails with high frequency of germline transmission using VSV-G pseudotyped retroviral vector. Biochem Biophys Res Commun 286:456–463

    Article  PubMed  CAS  Google Scholar 

  38. Kamihira M, Ono K, Esaka K, Nishijima K, Kigaku R, Komatsu H, Yamashita T, Kyogoku K, Iijima S (2005) High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. J Virol 79:10864–10874

    Article  PubMed  CAS  Google Scholar 

  39. Koo BC, Kwon MS, Choi BR, Kim JH, Cho SK, Sohn SH, Cho EJ, Lee HT, Chang W, Jeon I, Park JK, Park JB, Kim T (2006) Production of germline transgenic chickens expressing enhanced green fluorescent protein using a MoMLV-based retrovirus vector. FASEB J 20:2251–2260

    Article  PubMed  CAS  Google Scholar 

  40. Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36:184–204

    Article  PubMed  CAS  Google Scholar 

  41. Wang Y, Song Y-T, Liu Q, Liu C, Wang L-L, Liu Y, Zhou X-Y, Wu J, Wei H (2010) Quantitative analysis of lentiviral transgene expression in mice over seven generations. Transgenic Res 19:775–784

    Google Scholar 

  42. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    Article  PubMed  CAS  Google Scholar 

  43. Pfeifer A, Ikawa M, Dayn Y, Verma IM (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 99:2140–2145

    Article  PubMed  CAS  Google Scholar 

  44. Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL (2002) Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 99:14931–14936

    Article  PubMed  CAS  Google Scholar 

  45. Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4:1054–1060

    Article  PubMed  CAS  Google Scholar 

  46. Ritchie WA, King T, Neil C, Carlisle AJ, Lillico S, McLachlan G, Whitelaw CB (2009) Transgenic sheep designed for transplantation studies. Mol Reprod Dev 76:61–64

    Article  PubMed  CAS  Google Scholar 

  47. Hiripi L, Negre D, Cosset FL, Kvell K, Czömpöly T, Baranyi M, Gócza E, Hoffmann O, Bender B, Bősze Z (2010) Transgenic rabbit production with simian immunodeficiency virus-derived lentiviral vector. Transgenic Res Epub:Jan 13

    Google Scholar 

  48. Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Ito R, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527

    Article  PubMed  CAS  Google Scholar 

  49. McGrew MJ, Sherman AS, Ellard FM, Lillico SG, Gilhooley HJ, Mitrophanous KA, Kingsman AJ, Sang H (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5:728–733

    Article  PubMed  CAS  Google Scholar 

  50. Kim JN, Park TS, Park SH, Park KJ, Kim TM, Lee SK, Lim JM, Han JY (2010) Migration and proliferation of intact and genetically modified primordial germ cells and the generation of a transgenic chicken. Biol Reprod 82:257–262

    Article  PubMed  CAS  Google Scholar 

  51. McGrew MJ, Lillico SG, Sherman A, Taylor L, Sang H (2010) Functional conservation between rodents and chicken of regulatory sequences driving skeletal muscle gene expression in transgenic chickens. BMC Dev Biol 10:e26

    Article  CAS  Google Scholar 

  52. Scott BB, Lois C (2005) Generation of tissue-specific transgenic birds with lentiviral vectors. Proc Natl Acad Sci USA 102:16443–16447

    Article  PubMed  CAS  Google Scholar 

  53. Poynter G, Lansford R (2008) Generating transgenic quail using lentiviruses. Methods Cell Biol 87:281–293

    Article  PubMed  CAS  Google Scholar 

  54. Shin SS, Kim TM, Kim SY, Kim TW, Seo HW, Lee SK, Kwon SC, Lee GS, Kim H, Lim JM, Han JY (2008) Generation of transgenic quail through germ cell-mediated germline transmission. FASEB J 22:2435–2444

    Article  PubMed  CAS  Google Scholar 

  55. Agate RJ, Scott BB, Haripal B, Lois C, Nottebohm F (2009) Transgenic songbirds offer an opportunity to develop a genetic model for vocal learning. Proc Natl Acad Sci USA 106:17963–17967

    Article  PubMed  CAS  Google Scholar 

  56. Kwon SC, Choi JW, Jang HJ, Shin SS, Lee SK, Park TS, Choi IY, Lee GS, Song G, Han JY (2010) Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biol Reprod 82:1057–1064

    Google Scholar 

  57. McClintock B (1953) Induction of instability at selected loci in maize. Genetics 38:579–599

    PubMed  CAS  Google Scholar 

  58. Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  PubMed  CAS  Google Scholar 

  59. Ivics Z, Li MA, Mátés L, Boeke JD, Nagy A, Bradley A, Zsuzsanna I (2009) Transposon-mediated genome manipulation in vertebrates. Nat Meth 6:415–422

    Article  CAS  Google Scholar 

  60. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  PubMed  CAS  Google Scholar 

  61. Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, Wang X, Hackett PB, Largaespada DA, McIvor RS, Ekker SC (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2:e169

    Article  PubMed  CAS  Google Scholar 

  62. Sherman A, Dawson A, Mather C, Gilhooley H, Li Y, Mitchell R, Finnegan D, Sang H (1998) Transposition of the Drosophila element mariner into the chicken germ line. Nat Biotechnol 16:1050–1053

    Article  PubMed  CAS  Google Scholar 

  63. Sato Y, Kasai T, Nakagawa S, Tanabe K, Watanabe T, Kawakami K, Takahashi Y (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305:616–624

    Article  PubMed  CAS  Google Scholar 

  64. Lu Y, Lin C, Wang X (2009) PiggyBac transgenic strategies in the developing chicken spinal cord. Nucleic Acids Res 37:e141

    Article  PubMed  CAS  Google Scholar 

  65. Petitte JN, Clark ME, Liu G, Verrinder-Gibbins AM, Etches RJ (1990) Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development 108:185–189

    PubMed  CAS  Google Scholar 

  66. Etches RJ, Clark ME, Toner A, Liu G, Gibbins AM (1996) Contributions to somatic and germline lineages of chicken blastodermal cells maintained in culture. Mol Reprod Dev 45:291–298

    Article  PubMed  CAS  Google Scholar 

  67. Pain B, Clark M, Nakazawa H, Sakurai M, Samarut J, Etches R (1996) Long-term in vitro culture and characterization of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122:2339–2348

    PubMed  CAS  Google Scholar 

  68. Bezzubova O, Silbergleit A, Yamaguchi-Iwai Y, Takeda S, Buerstedde JM (1997) X-ray resistance and homologous recombination frequencies in a RAD54-/- mutant of the chicken DT40 cell line. Cell 89:185–193

    Article  PubMed  CAS  Google Scholar 

  69. van de Lavoir MC, Mather-Love C, Leighton P, Diamond JH, Heyer BS, Roberts R, Zhu L, Winters-Digiacinto P, Kerchner A, Gessaro T, Swanberg S, Delany ME, Etches RJ (2005) High-grade transgenic somatic chimeras from chicken embryonic stem cells. Mech Dev 123:31–41

    Article  PubMed  CAS  Google Scholar 

  70. Lavial F, Acloque H, Bachelard E, Nieto MA, Samarut J, Pain B (2009) Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Dev Biol 330:73–82

    Article  PubMed  CAS  Google Scholar 

  71. Tsunekawa N, Naito M, Sakai Y, Nishida T, Noce T (2000) Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 127:2741–2750

    PubMed  CAS  Google Scholar 

  72. Eyal-Giladi H, Ginsburg M, Farbarov A (1981) Avian primordial germ cells are of epiblastic origin. J Embryol Exp Morphol 65:139–147

    PubMed  CAS  Google Scholar 

  73. Simkiss K, Rowlett K, Bumstead N, Freeman BM (1989) Transfer of primordial germ cell DNA between embryos. Protoplasma 151:164–166

    Article  Google Scholar 

  74. Chang IK, Jeong DK, Hong YH, Park TS, Moon YK, Ohno T, Han JY (1997) Production of germline chimeric chickens by transfer of cultured primordial germ cells. Cell Biol Int 21:495–499

    Article  PubMed  CAS  Google Scholar 

  75. Vick L, Li Y, Simkiss K (1993) Transgenic birds from transformed primordial germ cells. Proc Biol Sci 251:179–182

    Article  PubMed  CAS  Google Scholar 

  76. Mozdziak PE, Wysocki R, Angerman-Stewart J, Pardue SL, Petitte JN (2006) Production of chick germline chimeras from fluorescence-activated cell-sorted gonocytes. Poult Sci 85:1764–1768

    PubMed  CAS  Google Scholar 

  77. Tajima A, Naito M, Yasuda Y, Kuwana T (1993) Production of germ line chimera by transfer of primordial germ cells in the domestic chicken (Gallus domesticus). Theriogenology 40:509–519

    Article  PubMed  CAS  Google Scholar 

  78. Ono T, Machida Y (1999) Immunomagnetic purification of viable primordial germ cells of Japanese quail (Coturnix japonica). Comp Biochem Physiol A Mol Integr Physiol 122:255–259

    Article  PubMed  CAS  Google Scholar 

  79. Zhao DF, Kuwana T (2003) Purification of avian circulating primordial germ cells by nycodenz density gradient centrifugation. Br Poult Sci 44:30–35

    Article  PubMed  CAS  Google Scholar 

  80. Park TS, Jeong DK, Kim JN, Song GW, Hong YH, Lim JM, Han JY (2003) Improved germline transmission in chicken chimeras produced by transplantation of gonadal primordial germ cells into recipient embryos. Biol Reprod 68:1657–1662

    Article  PubMed  CAS  Google Scholar 

  81. Kalina J, Senigl F, Micáková A, Mucksová J, Blazková J, Yan H, Poplstein M, Hejnar J, Trefil P (2007) Retrovirus-mediated in vitro gene transfer into chicken male germ line cells. Reproduction 134:445–453

    Article  PubMed  CAS  Google Scholar 

  82. Park TS, Hong YH, Kwon SC, Lim JM, Han JY (2003) Birth of germline chimeras by transfer of chicken embryonic germ (EG) cells into recipient embryos. Mol Reprod Dev 65:389–395

    Article  PubMed  CAS  Google Scholar 

  83. van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE, Delany ME, Etches RJ (2006) Germline transmission of genetically modified primordial germ cells. Nature 441:766–769

    Article  PubMed  CAS  Google Scholar 

  84. Leighton PA, van de Lavoir MC, Diamond JH, Xia C, Etches RJ (2008) Genetic modification of primordial germ cells by gene trapping, gene targeting, and phiC31 integrase. Mol Reprod Dev 75:1163–1175

    Article  PubMed  CAS  Google Scholar 

  85. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  PubMed  CAS  Google Scholar 

  86. Geurts AM, Cost GJ, Rémy S, Cui X, Tesson L, Usal C, Ménoret S, Jacob HJ, Anegon I, Buelow R (2010) Generation of gene-specific mutated rats using zinc-finger nucleases. Methods Mol Biol 597:211–225

    Article  PubMed  CAS  Google Scholar 

  87. Petitte JN (2006) Avian germplasm preservation: embryonic stem cells or primordial germ cells? Poult Sci 85:237–242

    PubMed  CAS  Google Scholar 

  88. Muñoz M, Trigal B, Molina I, Díez C, Caamaño JN, Gómez E (2009) Constraints to progress in embryonic stem cells from domestic species. Stem Cell Rev 5:6–9

    Article  PubMed  Google Scholar 

Books and Reviews

  • Nieuwkoop PD, Sutasurya LA (1979) Primordal germ cells in the chordates. Cambridge University Press, Cambridge

    Google Scholar 

  • Petitte JD (2004) Isolation and maintenance of avian ES cells. In: Handbook of stem cells, vol 1, Embryonic stem cells. Elsevier, Amsterdam, pp 471–479, Chapter 44

    Chapter  Google Scholar 

  • Pfeifer A, Hofmann A (2009) Lentiviral transgenesis. Methods Mol Biol 530:391–405

    Article  PubMed  CAS  Google Scholar 

  • Walsh G (2003) Biopharmeceuticals: biochemistry and biotechnology, 2nd edn. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

McGrew, M.J. (2013). Avian Specific Transgenesis . In: Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A. (eds) Sustainable Food Production. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5797-8_6

Download citation

Publish with us

Policies and ethics