Skip to main content

Thermodynamics of Continuum Damage Healing Mechanics

  • Reference work entry
  • First Online:
Handbook of Damage Mechanics

Abstract

In this chapter, the governing thermodynamic laws on the damage and healing processes are revisited. The solid mechanics thermodynamic framework provides a physically consistent description for the deformation mechanisms in solids, and it has been widely examined for the plasticity and damage processes in the literature (S. Yazdani, H.L. Schreyer, Combined plasticity and damage mechanics model for plain concrete. J. Eng. Mech. 116(7), 1435–1450 (1990); J.L. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects. Int. J. Plast. 7(7), 661–678 (1991); J.L. Chaboche, Cyclic viscoplastic constitutive equations, part I: a thermodynamically consistent formulation. J. Appl. Mech. 60(4), 813–821 (1993); N.R. Hansen, H.L. Schreyer, A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int. J. Solids Struct. 31(3), 359–389 (1994); G. Voyiadjis, I. Basuroychowdhury, A plasticity model for multiaxial cyclic loading and ratchetting. Acta Mech. 126(1), 19–35 (1998); J.L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24(10), 1642–1693 (2008)). Introduction of the healing process into the thermodynamic framework was formerly proposed by Voyiadjis et al. (A thermodynamic consistent damage and healing model for self healing materials. Int. J. Plast. 27(7), 1025–1044 (2011)) where a physically consistent description for the healing process is provided.

Basically, the mathematical foundation of the thermodynamic-based solid mechanics modeling was developed formerly for capturing plasticity and damage in metallic structures and it is not directly applicable to polymeric materials. Polymers usually show strain softening after their initial yield and they show strain hardening at higher strain levels. To overcome the mathematical deficiency associated with the classical thermodynamic framework, Voyiadjis, Shojaei, and Li (A generalized coupled viscoplastic- viscodamage- viscohealing theory for glassy polymers. Int. J. Plast. 28(1), 21–45 (2012a)) established a generalized formulation within the thermodynamic framework in which the mathematical competency for simulating the most nonlinear viscoplastic, viscodamage, and viscohealing effects in polymers was enhanced. They have successfully shown that the proposed framework is able to accurately capture the viscoplastic and viscodamage responses of polymers and the model has enough flexibility to capture the healing response in polymeric-based self-healing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R.J. Asaro, V. Lubarda, Mechanics of Solids and Materials (Cambridge University Press, New York, 2006)

    Book  Google Scholar 

  • M.F. Ashby, C. Gandhi, D.M.R. Taplin, Overview No. 3 fracture-mechanism maps and their construction for f.c.c. metals and alloys. Acta Metall. 27(5), 699–729 (1979)

    Article  Google Scholar 

  • E.J. Barbero, F. Greco, P. Lonetti, Continuum damage-healing mechanics with application to self-healing composites. Int. J. Damage Mech. 14(1), 51–81 (2005)

    Article  Google Scholar 

  • V.A. Beloshenko, V.N. Varyukhin, Y.V. Voznyak, The shape memory effect in polymers. Russ. Chem. Rev. 74(3), 265 (2005)

    Article  Google Scholar 

  • J.L. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects. Int. J. Plast. 7(7), 661–678 (1991)

    Article  Google Scholar 

  • J.L. Chaboche, Cyclic viscoplastic constitutive equations, part I: a thermodynamically consistent formulation. J. Appl. Mech. 60(4), 813–821 (1993)

    Article  MATH  Google Scholar 

  • J.L. Chaboche, Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers. Int. J. Solids Struct. 34(18), 2239–2254 (1997)

    Article  MATH  Google Scholar 

  • J.L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24(10), 1642–1693 (2008)

    Article  MATH  Google Scholar 

  • C. G’Sell, J.M. Hiver, A. Dahoun, Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking. Int. J. Solids Struct. 39, 3857–3872 (2002)

    Google Scholar 

  • N.R. Hansen, H.L. Schreyer, A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int. J. Solids Struct. 31(3), 359–389 (1994)

    Article  MATH  Google Scholar 

  • A.S. Khan, M. Baig, Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on the formability of an aluminum alloy. Int. J. Plast. 27(4), 522–538 (2011)

    Article  MATH  Google Scholar 

  • A.S. Khan, A. Pandey, T. Stoughton, Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part II: a very high work hardening aluminum alloy (annealed 1100 Al). Int. J. Plast. 26(10), 1421–1431 (2010a)

    Article  MATH  Google Scholar 

  • A.S. Khan, A. Pandey, T. Stoughton, Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part III: yield surface in tension-tension stress space (Al 6061-T 6511 and annealed 1100 Al). Int. J. Plast. 26(10), 1432–1441 (2010b)

    Article  MATH  Google Scholar 

  • E.L. Kirkby, V.J. Michaud, J.A.E. Månson, N.R. Sottos, S.R. White, Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 50(23), 5533–5538 (2009)

    Article  Google Scholar 

  • H. Lee, K. Peng, J. Wang, An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates. Eng. Fract. Mech. 21(5), 1031–1054 (1985)

    Article  Google Scholar 

  • G. Li, D. Nettles, Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. Polymer 51(3), 755–762 (2010)

    Article  Google Scholar 

  • G. Li, A. Shojaei, A viscoplastic theory of shape memory polymer fibres with application to self-healing materials. Proc. R. Soc. A 468(2144), 2319–2346 (2012). doi:10.1098/rspa.2011.0628

    Article  MathSciNet  Google Scholar 

  • J. Lubliner, On the thermodynamic foundations of non-linear solid mechanics. Int. J. Non-Linear Mech. 7(3), 237–254 (1972)

    Article  MATH  Google Scholar 

  • S. Miao, M.L. Wang, H.L. Schreyer, Constitutive models for healing of materials with application to compaction of crushed rock salt. J. Eng. Mech. 121(10), 1122–1129 (1995)

    Article  Google Scholar 

  • R.W. Rice, S.W. Freiman, J.J. Mecholsky, The dependence of strength-controlling fracture energy on the flaw-size to grain-size ratio. J. Am. Ceram. Soc. 63(3–4), 129–136 (1980)

    Article  Google Scholar 

  • A. Shojaei, G. Li, G.Z. Voyiadjis, Cyclic viscoplastic-viscodamage analysis of shape memory polymers fibers with application to self-healing smart materials. J. Appl. Mech. 80(1), 011014–011015 (2013a)

    Article  Google Scholar 

  • A. Shojaei, G.Z. Voyiadjis, P.J. Tan, Viscoplastic constitutive theory for brittle to ductile damage in polycrystalline materials under dynamic loading. Int. J. Plast. (2013b). doi:10.1016/j.ijplas.2013.02.009

    Google Scholar 

  • J.C. Simo, T.J.R. Hughes, Computational inelasticity. New York, Springer (1997)

    Google Scholar 

  • M.S. Sivakumar, G.Z. Voyiadjis, A simple implicit scheme for stress response computation in plasticity models. Journal of Computational Mechanics. 20(6), 520–529 (1997)

    Google Scholar 

  • V. Tvergaard, J.W. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J. Mech. Phys. Solids 40(6), 1377–1397 (1992)

    Article  MATH  Google Scholar 

  • G.Z. Voyiadjis, R.K. Abu Al-Rub, Thermodynamic based model for the evolution equation of the backstress in cyclic plasticity. Int. J. Plast. 19(12), 2121–2147 (2003)

    Article  MATH  Google Scholar 

  • G. Voyiadjis, I. Basuroychowdhury, A plasticity model for multiaxial cyclic loading and ratchetting. Acta Mech. 126(1), 19–35 (1998)

    Article  MATH  Google Scholar 

  • G.Z. Voyiadjis, M. Foroozesh, Anisotropic distortional yield model. J. Appl. Mech. 57(3), 537–547 (1990)

    Article  Google Scholar 

  • Z. Voyiadjis, P.I. Kattan, Advances in Damage Mechanics (Elsevier, London, 2006)

    Google Scholar 

  • G.Z. Voyiadjis, P.I. Kattan, A comparative study of damage variables in continuum damage mechanics. Int. J. Damage Mech. 18(4), 315–340 (2009)

    Article  Google Scholar 

  • G.Z. Voyiadjis, G. Pekmezi, B. Deliktas, Nonlocal gradient-dependent modeling of plasticity with anisotropic hardening. Int. J. Plast. 26(9), 1335–1356 (2010)

    Article  MATH  Google Scholar 

  • G.Z. Voyiadjis, A. Shojaei, G. Li, A thermodynamic consistent damage and healing model for self healing materials. Int. J. Plast. 27(7), 1025–1044 (2011)

    Article  MATH  Google Scholar 

  • G.Z. Voyiadjis, A. Shojaei, G. Li, A generalized coupled viscoplastic- viscodamage- viscohealing theory for glassy polymers. Int. J. Plast. 28(1), 21–45 (2012a)

    Article  Google Scholar 

  • G.Z. Voyiadjis, A. Shojaei, G. Li, P. Kattan, Continuum damage-healing mechanics with introduction to new healing variables. Int. J. Damage Mech. 21(3), 391–414 (2012b)

    Article  Google Scholar 

  • G.Z. Voyiadjis, A. Shojaei, G. Li, P.I. Kattan, A theory of anisotropic healing and damage mechanics of materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 468(2137), 163–183 (2012c). doi:10.1098/rspa.2011.0326

    Article  MathSciNet  MATH  Google Scholar 

  • S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Autonomic healing of polymer composites. Nature 409(6822), 794–797 (2001)

    Article  Google Scholar 

  • S. Yazdani, H.L. Schreyer, Combined plasticity and damage mechanics model for plain concrete. J. Eng. Mech. 116(7), 1435–1450 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Z. Voyiadjis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Voyiadjis, G.Z., Shojaei, A. (2015). Thermodynamics of Continuum Damage Healing Mechanics . In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5589-9_44

Download citation

Publish with us

Policies and ethics