Skip to main content

Damage Prediction in Metal Forming Process Modeling and Optimization: Simplified Approaches

  • Reference work entry
  • First Online:
Book cover Handbook of Damage Mechanics

Abstract

Some simplified numerical methods for damage predictions in metal forming process modeling and optimization are presented in this chapter. The incremental approaches including advanced damage models lead to accurate results, but the simulations are tedious and time-consuming. An efficient solving algorithm called inverse approach (IA) allows the fast modeling of forming processes in only one step between the known final part and the initial blank, avoiding the contact treatment and the incremental plastic integration. To improve the stress estimation in the IA, the so-called pseudo-inverse approach (PIA) has been developed. Some intermediate configurations are geometrically created and corrected by a free surface method to consider the deformation path, and the plastic integration based on the flow theory is carried out incrementally to consider the loading history. A simplified 3D strain-based damage model is coupled with the plasticity and implemented into a direct scalar integration algorithm of plasticity (without local iterations), which makes the plastic integration very fast and robust even for very large strain increments. These simplified approaches lead to very fast and useful numerical tools in the preliminary design and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • N. Aravas, The analysis of void growth that leads to central burst during extrusion. J. Mech. Phys. Solid 34, 55–79 (1986)

    Article  Google Scholar 

  • M. Azaouzi, H. Naceur, A. Delameziere, J.L. Batoz, S. Belouettar, An heuristic optimization algorithm for the blank shape design of high precision metallic parts obtained by a particular stamping process. Finite Elem. Anal. Des. 44, 842–850 (2008)

    Article  Google Scholar 

  • F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.–.H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets–Part I: theory. Int. J. Plast. 19, 1297–1319 (2003)

    Article  MATH  Google Scholar 

  • J.L. Batoz, G. Dhatt, Modélisation des structures par éléments fini, vol. 1, 3 (Edition HERMES, Paris, 1990)

    Google Scholar 

  • P. Breitkopf, H. Naceur, A. Rassineux, P. Villon, Moving least squares response surface approximation: formulation and metal forming applications. Comput. Struct. 83(17–18), 1411–1428 (2005)

    Article  Google Scholar 

  • M. Brunet, F. Sabourin, S. Mguil-Touchal, The prediction of necking and failure in 3d sheet forming analysis using damage variable. J. Phys. III 6, 473–482 (1996)

    Google Scholar 

  • F. Castro Catarina, C. António Carlos, C. Sousa Luisa, Pareto-based multi-objective hot forging optimization using a genetic algorithm, in 2nd International Conference on Engineering Optimization, Lisbon, 2010

    Google Scholar 

  • J.L. Chaboche, Continuum damage mechanics I-general concepts. II-damage growth, crack initiation, and crack growth. ASME Trans. J. Appl. Mech. 55, 59–72 (1988)

    Article  Google Scholar 

  • M. Chebbah, H. Naceur, A. Gakwaya, A fast algorithm for strain prediction in tube hydroforming based on one-step inverse approach. J. Mater. Process. Technol. 211(11), 1898–1906 (2011)

    Article  Google Scholar 

  • A. Cherouat, Y.Q. Guo, K. Saanouni, Y.M. Li, K. Debray, G. Loppin, Incremental versus inverse numerical approaches for ductile damage prediction in sheet metal forming. Int. J. Form. Process. 7(1–2), 99–122 (2004)

    Article  Google Scholar 

  • J.P. Cordebois, P. Ladevèze, Necking criterion applied in sheet metal forming, in Plastic Behavior of Anisotropic Solids, ed. by J.P. Boehler (Editions CNRS, Paris, 1985)

    Google Scholar 

  • K. Deb, An efficient constraint handling method for genetic algorithms. Comput. Method Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    Article  MATH  Google Scholar 

  • M. Dong, K. Debray, Y.Q. Guo, J.L. Shan, Design and optimization of addendum surfaces in sheet metal forming process. Int. J. Comput. Method. Eng. Sci. Mech. 8(4), 211–222 (2007)

    Article  MATH  Google Scholar 

  • M. Emmerich, K. Giannakoglou, B. Naujoks, Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans. Evolut. Comput. 10(4), 421–439 (2006)

    Article  Google Scholar 

  • L. Fourment, T. Balan, J.L. Chenot, Optimal design for nonsteady-state metal forming processes – I shape optimization method. Int. J. Numer. Method Eng. 39(1), 33–65 (1996)

    Article  MATH  Google Scholar 

  • J.C. Gelin, J. Oudin, Y. Ravalard, An imposed finite element method for the analysis of damage and ductile fracture in cold metal forming processes. Ann CIRP 34(1), 209–213 (1985)

    Article  Google Scholar 

  • J.C. Gelin, C. Labergère, S. Thibaud, Recent advances in process optimization and control for the design of sheet and tube hydroforming processes, in Numisheet, Detroit, edited by L.M. Smith et al., Vol. A, pp. 825–830, 2005

    Google Scholar 

  • Y.Q. Guo, J.L. Batoz, J.M. Detraux, P. Duroux, Finite element procedures for strain estimations of sheet metal forming parts. Int. J. Numer. Method Eng. 30, 1385–1401 (1990)

    Article  MATH  Google Scholar 

  • Y.Q. Guo, W. Gati, H. Naceur, J.L. Batoz, An efficient DKT rotation free shell element for springback simulation in sheet metal forming. Comput. Struct. 80(27–30), 2299–2312 (2002)

    Article  Google Scholar 

  • Y.Q. Guo, Y.M. Li, F. Bogard, K. Debray, An efficient pseudo-inverse approach for damage modeling in the sheet forming process. J. Mater. Process. Technol. 151(1–3), 88–97 (2004)

    Article  Google Scholar 

  • A.L. Gurson, Porous rigid-plastic materials containing rigid inclusions – yield function, plastic potential and void nucleation, in Proceedings of the Conference on Fracture, vol. 2, pp. 357–364, 1977

    Google Scholar 

  • A. Halouani, Y.M. Li, B. Abbès, Y.Q. Guo, An axisymmetric inverse approach for cold forging modelling. Eng. Lett. 18(4), 376–383 (2010)

    Google Scholar 

  • A. Halouani, Y.M. Li, B. Abbès, Y.Q. Guo, Simulation of axi-symmetrical cold forging process by efficient pseudo inverse approach and direct algorithm of plasticity. Finite Elem. Anal. Des. 61, 85–96 (2012a)

    Article  MathSciNet  Google Scholar 

  • A. Halouani, Y.M. Li, B. Abbès, Y.Q. Guo, F.J. Meng, C. Labergere, P. Lafon, Optimization of forging preforms by using pseudo inverse approach. Key Eng. Mater. 504–506, 613–618 (2012b)

    Article  Google Scholar 

  • C.S. Han, R.V. Grandhi, R. Srinivasan, Optimum design of forging die shapes using nonlinear finite element analysis. AIAA J. 31(4), 774–781 (1993)

    Article  Google Scholar 

  • P. Hartley, S.E. Clift, J. Salimi, C.E.N. Sturgess, I. Pillinger, The prediction of ductile fracture initiation in metalforming using a finite element method and various fracture criteria. Res. Mech. 28, 269–293 (1989)

    Google Scholar 

  • T. Jansson, A. Anderson, L. Nilsson, Optimization of draw-in for an automotive sheet metal part: an evaluation using surrogate models and response surfaces. J. Mater. Process. Technol. 159(3), 426–434 (2005)

    Article  Google Scholar 

  • M. Jansson, L. Nilsson, K. Simonsson, Tube hydroforming of aluminium extrusions using a conical die and extensive feeding. J. Mater. Process. Technol. 198(1–3), 14–21 (2008)

    Article  Google Scholar 

  • N. Kim, S. Kobayashi, Preform design in H-shape cross section axisymmetric forging by finite element method. Int. J. Mach. Tool Manuf. 30, 243–268 (1990)

    Article  Google Scholar 

  • S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science, New Series. 220(4598), 671–680 (1983)

    Google Scholar 

  • S. Kobayashi, S.I. Oh, T. Altan, Metal Forming and Finite Element Method (Oxford University Press, Oxford, 1989)

    Google Scholar 

  • C.H. Lee, H. Huh, Blank design and strain estimation for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation. J. Mater. Process. Technol. 82, 145–155 (1998)

    Article  Google Scholar 

  • H. Lee, K.E. Peng, J. Wang, An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates. Eng. Fract. Mech. 21(5), 1031–1054 (1985)

    Article  Google Scholar 

  • J. Lemaître, J.L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1990)

    Book  MATH  Google Scholar 

  • Y.M. Li, B. Abbès, Y.Q. Guo, Two efficient algorithms of plastic integration for sheet forming modeling. ASME J. Manuf. Sci. Technol. 129, 698–704 (2007)

    Article  Google Scholar 

  • J.F. Mariage, K. Saanouni, P. Lestriez, A. Cherouat, Numerical simulation of ductile damage in metal forming processes: a simple predictive model. Part I. Theoretical and numerical aspects. Int. J. Form. Process 5(2–3–4), 363–376 (2002)

    Article  Google Scholar 

  • K. Mathur, P. Dawson, Damage evolution modeling in bulk forming processes, in Computational Methods for Predicting Material Processing Defects (Elsevier, Predeleanu, 1987)

    Google Scholar 

  • M.D. McKay, W.J. Conover, R.J. Beckman, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  • F.J. Meng, C. Labergere, P. Lafon, Methodology of the shape optimization of forging dies. Int. J. Mater. Form 3(Suppl 1), 927–930 (2010)

    Article  Google Scholar 

  • F. Meng, Multi-objective optimization of several stages forging by using advanced numerical simulation and Meta-model, PhD thesis, Université de Technologie de Troyes. (2012)

    Google Scholar 

  • N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  • R. Myers, D. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd edn. (Wiley, New York, 2002). ISBN 0-471-41255-4

    Google Scholar 

  • H. Naceur, Optimisation de forme de structures minces en grandes transformations, Edition EUE, ISBN-13: 978-613-1-54700-3, p. 240, (2010)

    Google Scholar 

  • H. Naceur, Y.Q. Guo, W. Gati, New enhancements in the inverse approach for the fast modeling of autobody stamping process. Int. J. Comput. Eng. Sci. 3(4), 355–384 (2002)

    Article  Google Scholar 

  • H. Naceur, Y.Q. Guo, J.L. Batoz, C. Knopf-Lenoir, Optimization of drawbead restraining forces and drawbead design in sheet metal forming process. Int. J. Mech. Sci. 43(10), 2407–2434 (2001)

    Google Scholar 

  • H. Naceur, Y.Q. Guo, S. Ben-Elechi, Response surface methodology for design of sheet forming parameters to control springback effects. Comput. Struct. 84, 1651–1663 (2006)

    Article  Google Scholar 

  • B. Nayrolles, G. Touzot, P. Villon, Generalizing the Finite Element Method: Diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992)

    Google Scholar 

  • E. Onate, M. Kleiber, Plastic and viscoplastic flow of void containing metal – applications to axisymmetric sheet forming problem. Int. J. Numer. Meth. Eng. 25, 237–251 (1988)

    Article  Google Scholar 

  • P. Picart, O. Ghouati, J.C. Gelin, Optimization of metal forming process parameters with damage minimization. J. Mater. Process. Technol. 80–81, 597–601 (1998)

    Article  Google Scholar 

  • G. Rousselier, Ductile fracture models and their potential in local approach of fracture. Nucl. Eng. Des. 105(1), 97–111 (1987)

    Article  Google Scholar 

  • K. Saanouni, Damage Mechanics in Metal Forming. Advanced Modeling and Numerical Simulation (ISTE/Wiley, London, 2012). ISBN 978-1-8482-1348-7

    Book  Google Scholar 

  • K. Saanouni, J.L. Chaboche, Computational damage mechanics, application to metal forming, in Comprehensive Structural Integrity, Chapter 7, ed. by R. de Borst, H.A. Mang. Numerical and Computational Methods, vol. 3 (Elsevier, Amsterdam, 2003)

    Google Scholar 

  • K. Saanouni, K. Nesnas, Y. Hammi, Damage modeling in metal forming processes. Int. J. of Damage Mechanics. 9(3), 196–240 (2000)

    Google Scholar 

  • T. Santner, B. Williams, W. Notz, The Design and Analysis of Computer Experiments (Springer, New York, 2003)

    Book  MATH  Google Scholar 

  • O. Schenk, M. Hillmann, Optimal design of metal forming die surfaces with evolution strategies. Comp. Struct. 82, 1695–1705 (2004)

    Article  Google Scholar 

  • H.B. Shim, K.C. Son, Optimal blank shape design by sensitivity method. J. Mater. Process. Technol. 104, 191–199 (2000)

    Article  Google Scholar 

  • J.C. Simo, R.L. Taylor, A return mapping algorithm for plane stress elastoplasticity. Int. J. Numer. Method Eng. 22, 649–670 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • D. Vieilledent, L. Fourment, Shape optimization of axisymmetric preform tools in forging using a direct differentiation method. Int. J. Numer. Method Eng. 52, 1301–1321 (2001)

    Article  MATH  Google Scholar 

  • G. Zhao, E. Wright, R.V. Grandhi, Preform die shape design in metal forming using an optimization method. Int. J. Numer. Method Eng. 40(7), 1213–1230 (1997)

    Article  MATH  Google Scholar 

  • G. Zhao, X. Ma, X. Zhao, R.V. Grandhi, Studies on optimization of metal forming processes using sensitivity analysis methods. J. Mater. Process. Technol. 147, 217–228 (2004)

    Article  Google Scholar 

  • Y.Y. Zhu, S. Cescotto, A.M. Habraken, A fully coupled elastoplastic damage modeling and fracture criteria in metal forming processes. J. Meter. Process. Technol. 32, 197–204 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Qiao Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Guo, YQ., Li, Y., Abbès, B., Naceur, H., Halouani, A. (2015). Damage Prediction in Metal Forming Process Modeling and Optimization: Simplified Approaches. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5589-9_41

Download citation

Publish with us

Policies and ethics