Micromechanical Polycrystalline Damage-Plasticity Modeling for Metal Forming Processes

  • Benoit Panicaud
  • Léa Le Joncour
  • Neila Hfaiedh
  • Khemais Saanouni
Reference work entry


This chapter deals with the presentation of micromechanical modeling of the elastoplastic material behavior exhibiting ductile damage together with microstructural evolution in terms of grain rotation and phase transformation, under large inelastic strains. A description of the main experimental methods is proposed and multiscale measurements are discussed. For the mesoscopic scale, diffraction techniques are presented as well as microscopy’s results for a specific material. For the macroscopic scale, techniques of tensile test coupled with digital image correlation are described. This allows the damage measurement at different scales. Micromechanical modeling aspects based on the thermodynamics of irreversible processes with state variables defined at different scales are discussed. A non-exhaustive review of several possible models is given. These models depend on the hypothesis for the energy or strain equivalence and on the smallest scale considered. Two particular models are then detailed with their associated constitutive equations and the corresponding numerical aspects. Application is made to two different materials to test the ability of the model to be used for metal forming simulations.


Shear Band Slip System Elastic Strain Neutron Diffraction Digital Image Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations and Notations


Continuous damage mechanics


Critical resolved shear stress


Digital image correlation


Duplex stainless steel(s)


Electron backscatter diffraction


Finite element analysis


(Crystalline) orientation distribution function


Representative volume element


Scanning electron microscopy


Zero-rank tensor = scalar variable


X-ray diffraction

\( \overrightarrow{X} \)

One-rank tensor = vector variable

\( \underset{\bar{\mkern6mu}}{X} \)

Second-rank tensor

\( \underset{\bar{\mkern6mu}}{\underset{\bar{\mkern6mu}}{X}} \)

Fourth-rank tensor

\( \underset{\bar{\mkern6mu}}{X}\cdot \underset{\bar{\mkern6mu}}{Y} \)

Contraction between the second-rank tensors \( \underset{\bar{\mkern6mu}}{X} \) and \( \underset{\bar{\mkern6mu}}{Y} \)

\( \underset{\bar{\mkern6mu}}{X}:\underset{\bar{\mkern6mu}}{Y} \)

Double contraction between the second-rank tensors \( \underset{\bar{\mkern6mu}}{X} \) and \( \underset{\bar{\mkern6mu}}{Y} \)

\( \underset{\bar{\mkern6mu}}{X}\otimes \underset{\bar{\mkern6mu}}{Y} \)

Tensorial product between the second-rank tensors \( \underset{\bar{\mkern6mu}}{X} \) and \( \underset{\bar{\mkern6mu}}{Y} \)


Macaulay brackets which means the positive part of a scalar X

\( {\left(\underset{\bar{\mkern6mu}}{X}\right)}^T\ \mathrm{or}\ {\left(\underset{\bar{\mkern6mu}}{\underset{\bar{\mkern6mu}}{X}}\right)}^T \)

Transpose of X (second-rank or fourth-rank tensor)

\( \left\Vert \underset{\bar{\mkern6mu}}{X}\right\Vert =\sqrt{\underset{\bar{\mkern6mu}}{X}:\underset{\bar{\mkern6mu}}{X}/3} \)

Euclidean norm of a second-rank tensor \( \underset{\bar{\mkern6mu}}{X} \)

\( \left\Vert \overrightarrow{X}\right\Vert =\sqrt{\overrightarrow{X}\cdot \overrightarrow{X}} \)

Euclidean norm of a vector \( \overrightarrow{X} \)


Average of the quantity x

Capital letters are for macroscopic or part quantities, whereas minuscule letters are for mesoscopic or microscopic ones.



Authors would like to thank gratefully the different people that are indirectly participants of this work through their collaboration to the theoretical, numerical, and experimental aspects: Manuel François, Arjen Roos, Andrzej Baczmanski, and Chedly Braham. We would also thank Emmanuelle Rouhaud for the time that she generously spent to correct this entire chapter. All these collaborations have allowed progressing on this particular domain and making the present authors as efficient as possible.


  1. L. Anand, Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals at large strains. Comput. Meth. Appl. Mech. Eng. 193(48–51), 5359–5383 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. R. Asaro, V. Lubards, Mechanics of Solids and Materials (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  3. A. Baczmanski, Habilitation thesis: stress field in polycrystalline materials studied using diffraction and self-consistent modeling, Ph.D. thesis, Informatyki Stosowanej Akademia Gorniczo-Hutnicza Krakow, 2005Google Scholar
  4. A. Baczmanski, L. Le Joncour, B. Panicaud, M. Francois, C. Braham, A.M. Paradowska, S. Wronski, S. Amara, R. Chiron, Neutron time-of-flight diffraction used to study aged duplex stainless steel at small and large strain until sample fracture. J. Appl. Crystallogr. 44, 966–982 (2011)CrossRefGoogle Scholar
  5. J. Besson, G. Cailletaud, J-L. Chaboche, S. Forest, Mécanique non linéaire des Matériaux, 2001Google Scholar
  6. J.-P. Boehler. Lois de comportement anisotrope des milieux continus. Journal de Mécanique, 17 :153190, 1978MathSciNetGoogle Scholar
  7. M. Bornert, T. Bretheau, P. Gilormini, Homogénéisation en Mécanique des Matériaux, Vols. 1 et 2 (ISTE USA, Newport Beach, 2001)Google Scholar
  8. M. Boudifa, Modélisation macro et micro-macro des matériaux polycristallins endommageables avec compressibilité induite, Ph.D. thesis, Université de Technologie de Troyes, 2006.Google Scholar
  9. M. Boudifa, K. Saanouni, J.L. Chaboche, A micromechanical model for inelastic ductile damage prediction in polycrystalline metals. Int. J. Mech. Sci. 51, 453–464 (2009)CrossRefGoogle Scholar
  10. B. Bugat, Comportement et endommagement des aciers austéno-ferritiques vieillis: une approche micromécanique, Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, 2000.Google Scholar
  11. H.J. Bunge, Texture Analysis in Materials Science – Mathematical Methods (Butterworths, London, 1982)Google Scholar
  12. G. Cailletaud, S. Forest, D. Jeulin, F. Feyel, I. Galliet, V. Mounoury, S. Quilici, Some elements of microstructural mechanics. Comput. Mater. Sci. 27(3), 351–374 (2003)CrossRefGoogle Scholar
  13. V. Calonne, Propagation de fissures par fatigue dans les aciers austéno-ferritiques moulés; influence de la microstructure, du vieillissement et de la température d’essai, Ph.D. thesis, Ecole des mines de Paris, 2001Google Scholar
  14. S. Catalao, X. Feaugas, P. Pilvin, M.-T. Cabrillata, Dipole heights in cyclically deformed polycrystalline aisi 316l stainless steel. Mater. Sci. Eng. A 400–401, 349–352 (2005)CrossRefGoogle Scholar
  15. B.K. Chen, P.F. Thomson, S.K. Choi, Computer modeling of microstructure during hot flat rolling of aluminium. Mater. Sci. Technol. 8(1), 72–77 (1992)CrossRefGoogle Scholar
  16. J.H. Cho, P.R. Dawson, Modeling texture evolution during friction stir welding of stainless steel with comparison to experiments. J. Eng. Mater. Technol. 130, 1–12 (2008)CrossRefGoogle Scholar
  17. J.W. Christian, Plastic deformation of bcc metals, in International Conference on the Strength of Metals and Alloys (1970)Google Scholar
  18. B. Clausen, T. Lorentzen, M.A.M. Bourke, M.R. Daymond, Lattice strain evolution during uniaxial tensile loading of stainless steel. Mater. Sci. Eng. A 259, 17–24 (1999)CrossRefGoogle Scholar
  19. R. Dakhlaoui, Analyse du comportement mécanique des constituants d’un alliage polycristallin multiphasé par diffraction des rayons X et neutronique, Ph.D. thesis, Ecole Nationale Supérieur des Arts et Métier de Paris, 2006Google Scholar
  20. P. Dawson, D. Boyce, S. MacEwen, R. Rogge, On the influence of crystal elastic moduli on computed lattice strains in aa-5182 following plastic straining. Mater. Sci. Eng. A 313, 123–144 (2001)CrossRefGoogle Scholar
  21. P.R. Dawson, S.R. MacEwen, P.D. Wu, Advances in sheetmetal forming analyses: dealing with mechanical anisotropy from crystallographic texture. Int. Mater. Rev. 48(2), 86–122 (2003)CrossRefGoogle Scholar
  22. M.R. Daymond, The determination of a continuum mechanics equivalent elastic strain from the analysis of multiple diffraction peaks. J. Appl. Phys. 96, 4263–4272 (2004)CrossRefGoogle Scholar
  23. A. Desestret, J. Charles, Les aciers inoxydables austéno-ferritiques. Les aciers inoxydables, Les éditions de la physique 31–677 (1990)Google Scholar
  24. B. Devincre, L.P. Kubin, C. Lemarchand, R. Madec, Mesoscopic simulations of plastic deformation. Mater. Sci. Eng. A 309–310, 211–219 (2001)CrossRefGoogle Scholar
  25. X. Duan, T. Shepard, Simulation and control of microstructure evolution during hot extrusion of hard aluminium alloy. Mater. Sci. Eng. A 351(1/2), 282–292 (2003)CrossRefGoogle Scholar
  26. C. Eberl, R. Thompson, D. Gianola, Digital image correlation and tracking (2006).
  27. A. El Bartali, Apport des mesures de champs cinématiques à l’étude des micromécanismes d’endommagement en fatigue plastique d’un acier inoxydable duplex, Ph.D. thesis, Ecole Centrale de Lille, 2007Google Scholar
  28. P. Evrard, Modélisation polycrystalline du comportement élastoplastique d’un acier inoxydable austéno-ferritique, Thèse de doctorat, Ecole Centrale de Lille, 2008Google Scholar
  29. P. Franciosi, The concept of latent hardening and strain hardening in metallic single crystals. Acta Metall. 33, 1601–1612 (1985)CrossRefGoogle Scholar
  30. D. François, A. Pineau, A. Zaoui, Comportement mécanique des matériaux: viscoplasticité, endommagement. mécanique de la rupture et mécanique du contact (1995)Google Scholar
  31. D. François, Endommagement et rupture des matériaux (2004)Google Scholar
  32. M. Frewer, More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202, 213–246 (2009)CrossRefzbMATHGoogle Scholar
  33. T. Furu, H.R. Shercliff, G.J. Baxter, C.M. Sellars, Influence of transient deformation conditions on recrystallization during thermomechanical processing of an Al-1% Mg alloy. Acta Mater. 47(8), 2377–2389 (1999)CrossRefGoogle Scholar
  34. W. Gambin, Plasticity and Textures (Kluwer, Dordrecht, 2001)CrossRefGoogle Scholar
  35. G. Gottstein, V. Marx, R. Sebald, Integration of physically-based models into FEM and application in simulation of metal forming processes. Model. Simul. Mater. Sci. Eng. 8(6), 881–891 (2000)CrossRefGoogle Scholar
  36. M. Grugicic, S. Batchu, Crystal plasticity analysis of earing in deep-drawn OFHC copper cups. J. Mater. Sci. 37, 753–764 (2002)CrossRefGoogle Scholar
  37. A.M. Habraken, L. Duchene, Anisotropic elasto-plastic finite element analysis using a stress-strain interpolation method based on a polycrystalline model. Int. J. Plasticity 20(8–9), 1525–1560 (2004)CrossRefzbMATHGoogle Scholar
  38. K.S. Havner, Finite Plastic Deformation of Crystalline Solids (Cambridge University Press, Cambridge, 1992)CrossRefzbMATHGoogle Scholar
  39. N. Hfaiedh, K. Saanouni, M. Francois, A. Roos, Self-consistent intragranular ductile damage modeling in large plasticity for FCC polycrystalline materials. Proc. Eng. 1, 229–232 (2009)Google Scholar
  40. N. Hfaiedh, Modélisation micromécanique des polycristaux – couplage plasticité, texture et endommagement, Ph.D. thesis, Université de Technologie de Troyes, 2009Google Scholar
  41. D. Hull, D.J. Bacon, Introduction to Dislocations (Butterworth–Heinemann, Oxford, 1995)Google Scholar
  42. K. Inal, R.K. Mishra, O. Cazacu, Forming simulation of aluminum sheets using an anisotropic yield function coupled with crystal plasticity theory. Int. J. Solids Struct. 47, 2223–2233 (2010)CrossRefzbMATHGoogle Scholar
  43. S.R. Kalidindi, C.A. Bronkhorst, L. Anand, Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40, 537–569 (1992)CrossRefGoogle Scholar
  44. C. Keller, E. Hug, R. Retoux, X. Feaugas, TEM study of dislocation patterns in near-surface and core regions of deformed nickel polycrystals with few grains across the cross section. Mech. Mater. 42, 44–54 (2010)CrossRefGoogle Scholar
  45. U.F. Kocks, C.N. Tomé, H.R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Material Properties (Cambridge University Press, Cambridge, 1998)zbMATHGoogle Scholar
  46. L. Le Joncour, B. Panicaud, A. Baczmański, M. François, C. Braham, A. Paradowska, S. Wroński, R. Chiron, Duplex steel studied at large deformation until damage at mesoscopic and macroscopic scales. Mech. Mater. 42, 1048–1058 (2010)CrossRefGoogle Scholar
  47. L. Le Joncour, Analyses expérimentales et modélisation multi-échelles de l’endommagement d’un acier UR45N laminé vieilli, Ph.D. thesis, Université de Technologie de Troyes, 2011Google Scholar
  48. J. Lemaitre, J.-L. Chaboche, Mécanique Des Matériaux Solides (Cambridge University Press, Cambridge, 2001)Google Scholar
  49. P. Lestriez, Modélisation numérique du couplage thermo-mécanique endommagement en transformations finies. Application à la mise en forme, Ph.D. thesis, Université de Technologie de Troyes, 2003Google Scholar
  50. P. Lipinski, M. Berveiller Int. J. Plasticity, 5, 149–172 (1989)CrossRefzbMATHGoogle Scholar
  51. F. Louchet, Plasticité des métaux de structure cubique centrée. Dislocations et déformation plastique (1979)Google Scholar
  52. S. Mahajan, Interrelationship between slip and twinning in bcc crystals. Acta Metall. 23, 671–684 (1975)CrossRefGoogle Scholar
  53. E. Maire, C. Bordreuil, J.-C. Boyer, L. Babouta, Damage initiation and growth in metals. Comparison between modeling and tomography experiments. J. Mech. Phys. Solids 53, 2411–2434 (2005)CrossRefzbMATHGoogle Scholar
  54. J.-F. Mariage, Simulation numérique de l'endommagement ductile en formage de pièces massives, Ph.D. thesis, Université de Technologie de Troyes, 2003.Google Scholar
  55. A. Mateo, L. Lianes, M. Anglade, A. Redjaimia, G. Metauer, Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel. J. Mater. Sci. 32(12), 4533–4540 (1997)CrossRefGoogle Scholar
  56. L. Mcirdi, Comportement et endommagement sous sollicitation mécanique d'un acier austéno-ferritique moulé vieilli, Ph.D. thesis, Ecole Nationale Supérieur des Arts et Métier de Paris, 2000Google Scholar
  57. C. Miehe, J. Schotte, Anisotropic finite elastoplastic analysis of shells: Simulation of earing in deep-drawing of single- and polycrystalline sheets by Taylor-type micro-to-macro transitions. Comput. Meth. Appl. Mech. Eng. 193(1–2), 25–57 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  58. F. Montheillet, F. Moussy, Physique et Mécanique de L’endommagement (les Ed. De Physique, Les Ulis, 1988)Google Scholar
  59. T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, Dordrecht, 1987)CrossRefGoogle Scholar
  60. R.J. Nedoushan, M. Farzin, M. Mashayekh, D. Banabic, A microstructure-based constitutive model for superplastic forming. Metal. Mater. Trans. A 43, 4266–4280 (2012)CrossRefGoogle Scholar
  61. C.J. Neil, J.A. Wollmershauser, B. Clausen, C.N. Tomé, R. Agnew, Modeling lattice strain evolution at finite strains and experimental verification for copper and stainless steel using in situ neutron diffraction. Int. J. Plasticity 26(12), 1772–1791 (2010)CrossRefzbMATHGoogle Scholar
  62. S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials (Elsevier, Amsterdam, 1993)zbMATHGoogle Scholar
  63. S. Nemat-Nasser, Plasticity. A Treatise on Finite Deformation of Heterogeneous Inelastic Materials (Cambridge University Press, Cambridge, 2004)zbMATHGoogle Scholar
  64. B. Panicaud, E. Rouhaud, A frame-indifferent model for a thermo-elastic material beyond the three-dimensional eulerian and lagrangian descriptions, Cont. Mech. Thermodyn. (2013, in press)Google Scholar
  65. A. Paquin, S. Berbenni, V. Favier, X. Lemoine, M. Berveiller, Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels. Int. J. Plasticity 17, 1267–1302 (2001)CrossRefzbMATHGoogle Scholar
  66. V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, New York, 2005)Google Scholar
  67. P. Pilvin, The contribution of micromechanical approaches to the modeling of inelastic behavior of polycrystals. Soc. Fr. Métall. Matér. 1, 31–45 (1994)Google Scholar
  68. D. Raabe, Computational Material Science: The Simulation of Materials Microstructures and Properties (Wiley-VCH, Weinheim, 1998)CrossRefGoogle Scholar
  69. D. Raabe, F. Roters, Using texture components in crystal plasticity finite element simulations. Int. J. Plasticity 20(3), 339–361 (2004)CrossRefzbMATHGoogle Scholar
  70. E. Rouhaud, B. Panicaud, R. Kerner, Canonical frame-indifferent transport operators with the four-dimensional formalism of differential geometry, Comput. Mater. Sci. (2013, in press)Google Scholar
  71. K. Saanouni, Damage Mechanics in Metal Forming. Advanced Modeling and Numerical Simulation (ISTE John Wiley, London, 2012). ISBN 978-1-8482-1348-7CrossRefGoogle Scholar
  72. J. R. Santisteban, L. Edwards, A. Steuwer, P. J. Withers, Time-of-flight neutron transmission diffraction, J. Appl. Crystallogr. (2001). ISSN 0021-8898.
  73. E. Schmid, W. Boas, Plasticity of Crystals (Chapman and Hall, London, 1968)Google Scholar
  74. C.M. Sellard, Modeling microsctructural development during hot rolling. Mater. Sci. Technol. 6, 1072–1081 (1990)CrossRefGoogle Scholar
  75. H.R. Shercliff, A.M. Lovatt, Modeling of microstructure evolution in hot deformation. Philos. Trans. R. Soc. Lond. 357, 1621–1643 (1999)CrossRefGoogle Scholar
  76. C. Teodosiu, F. Sidoro, Theory of finite elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 14, 165–176 (1976)CrossRefzbMATHGoogle Scholar
  77. C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics, 3rd edn. (Springer, New York, 2003)Google Scholar
  78. V. Vitek, The core structure of 1/2[1 1 1] screw dislocations in bcc crystals. Philos. Mag. 21, 1049–1073 (1970)CrossRefGoogle Scholar
  79. D.S. Wilkinson, X. Duan, J. Kang, M. Jain, J.D. Embury, Modeling the role of microstructure on shear instability with reference to the formability of aluminum alloys, Mater. Sci. Forum 519/521, 183–190 (2006)Google Scholar
  80. S. Wroński, A. Baczmański, R. Dakhlaoui, C. Braham, K. Wierzbanowski, E.C. Oliver, Determination of stress field in textured duplex steel using TOF neutron diffraction method. Acta Mater. 55, 6219–6233 (2007)CrossRefGoogle Scholar
  81. W. Yang, W.B. Lee, Mesoplasticity and Its Applications (Springer, Berlin, 1993)CrossRefGoogle Scholar
  82. Zebulon, Zset/Zebulon: Developer Manual (2008)Google Scholar
  83. Q. Zhu, C.M. Sellars, Microstructural evolution of Al-Mg alloys during thermomechanical processing. Mater. Sci. Forum 331(1), 409–420 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Benoit Panicaud
    • 1
  • Léa Le Joncour
    • 1
  • Neila Hfaiedh
    • 1
  • Khemais Saanouni
    • 2
  1. 1.ICD/LASMIS, STMR UMR-CNRS 6279University of Technology of TroyesTroyes CedexFrance
  2. 2.ICD/LASMIS, STMR UMR CNRS 6281University of Technology of TroyesTroyesFrance

Personalised recommendations